Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Drug Resist ; 16: 853-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818807

RESUMO

Background: Pseudomonas aeruginosa is incriminated in septicemia, significant economic losses in the poultry production sector, and severe respiratory infections in humans. This study aimed to investigate the occurrence, oprL sequencing, antimicrobial resistance patterns, virulence-determinant, Quorum sensing, and antibiotic resistance genes of P. aeruginosa retrieved from broiler chickens. Methods: Two hundred samples were collected from 120 broiler chickens from broiler farms at Ismailia Governorate, Egypt. Consequently, the bacteriological examination was conducted and the obtained P. aeruginosa strains were tested for oprL gene sequencing, antibiogram, and PCR screening of virulence, Quorum sensing, and antibiotic resistance genes. Results: The overall prevalence of P. aeruginosa in the examined birds was 28.3%. The oprL gene sequence analysis underlined that the tested strain expressed a notable genetic identity with various P. aeruginosa strains isolated from different geographical areas in the USA, India, China, Chile, and Ghana. PCR evidenced that the obtained P. aeruginosa strains, carrying virulence-related genes: oprL, toxA, aprA, phzM, and exoS in a prevalence of 100%, 100%, 42.5%, 33.3%, and 25.9%, respectively. Moreover, the recovered P. aeruginosa strains possessed the Quorum sensing genes: lasI, lasR, rhlI, and rhlR in a prevalence of 85.2%, 85.2%, 81.5%, and 81.5%, respectively. Furthermore, 40.7% of the isolated P. aeruginosa were XDR to seven antimicrobial classes, possessing sul1, bla TEM, tetA, bla CTX-M, bla OXA-1, and aadA1 genes. Conclusion: As we can tell, this is the first report emphasizing the evolution of XDR P. aeruginosa strains from broiler chicken in Egypt, which is supposed to be a serious threat to public health. The emerging XDR P. aeruginosa in poultry frequently harbored the oprL, toxA, and aprA virulence genes, the lasI, lasR, rhlI, and rhlR Quorum sensing genes, and the sul1, bla TEM, tetA, bla CTXM, bla OXA-1, and aadA1 resistance genes.

2.
Pathogens ; 11(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365013

RESUMO

Aeromonas veronii is associated with substantial economic losses in the fish industry and with food-borne illness in humans. This study aimed to determine the prevalence, antibiogram profiles, sequence analysis, virulence and antimicrobial resistance genes, and pathogenicity of A. veronii recovered from Mugil seheli. A total of 80 fish were randomly gathered from various private farms in Suez Province, Egypt. Subsequently, samples were subjected to clinical, post-mortem, and bacteriological examinations. The retrieved isolates were tested for sequence analysis, antibiogram profile, pathogenicity, and PCR detection of virulence and resistance genes. The prevalence of A. veronii in the examined M. seheli was 22.5 % (18/80). The phylogenetic analyses revealed that the tested A. veronii strains shared high genetic similarity with other A. veronii strains from India, UK, and China. Using PCR it was revealed that the retrieved A. veronii isolates harbored the aerA, alt, ser, ompAII, act, ahp, and nuc virulence genes with prevalence of 100%, 82.9%, 61.7%, 55.3%, 44.7%, 36.17%, and 29.8%, respectively. Our findings revealed that 29.8% (14/47) of the retrieved A. veronii strains were XDR to nine antimicrobial classes and carried blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 resistance genes. Likewise, 19.1% (9/47) of the obtained A. veronii strains were MDR to eight classes and possessed blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 genes. The pathogenicity testing indicated that the mortality rates positively correlated with the prevalence of virulence-determinant genes. To our knowledge, this is the first report to reveal the occurrence of XDR and MDR A. veronii in M. seheli, an emergence that represents a risk to public health. Emerging XDR and MDR A. veronii in M. seheli frequently harbored aerA, alt, ser, ompAII, and act virulence genes, and blaTEM, sul1, tetA, blaCTX-M, blaSHV, and aadA1 resistance genes.

3.
Infect Drug Resist ; 15: 4321-4334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971557

RESUMO

Background: Gallibacterium anatis is incriminated frequently in severe economic losses and mortalities in the poultry industry. This study aimed to detect the prevalence of G. anatis in layer chickens, sequence analysis, the antibiogram profiles, and PCR screening of virulence determinants and antibiotic resistance genes. Methods: Accordingly, 300 samples (tracheal swabs, ovary and oviduct, and lung) were randomly collected from 100 diseased layer chickens from private commercial layer farms at Elsharkia Governorate, Egypt. The bacteriological examination was carried out. The retrieved isolates were tested for 16S rRNA-23S rRNA gene sequencing, antibiogram profiling, PCR screening of virulence (gtxA, fifA, and gyrB), and antibiotic resistance genes (bla ROB, aphA1, tetB, and tetH). Results: The prevalence of G. anatis was 25% in the examined diseased layer chickens. The sequence analyses emphasized that the tested strains derived from a common ancestor and exhibited a notable genetic similarity with other G. anatis strains from USA, China, and Denmark. The isolated G. anatis strains were highly resistant to sulfamethoxazole-trimethoprim, oxytetracycline, penicillin, ampicillin, kanamycin, neomycin, and erythromycin. The PCR revealed that the retrieved G. anatis strains carried gtxA, gyrB, and fifA virulence genes with a prevalence of 100%, 100%, and 38.3%, respectively. Approximately 30.1% of the retrieved G. anatis isolates were XDR to six antimicrobial classes and harbored bla ROB, aphA1, and tetB resistance genes. Moreover, 20.5% of the isolated G. anatis strains were MDR to three different classes and carried bla ROB and tetH resistance genes. Conclusion: Briefly, this study emphasized the existence of XDR and MDR G. anatis strains in poultry. Florfenicol and norfloxacin displayed a promising antimicrobial effect against the emerging XDR and MDR G. anatis in poultry. The emergence of XDR and MDR G. anatis is considered a public health alarm.

4.
Infect Drug Resist ; 15: 2167-2185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498633

RESUMO

Background: Bacillus cereus is a common food poisoning pathogen in humans. This study aimed to investigate the prevalence, molecular typing, antibiogram profile, pathogenicity, dissemination of virulence and antibiotic resistance genes associated with natural B. cereus infection among Mugil seheli. Methods: Consequently, 120 M. seheli (40 healthy and 80 diseased) were obtained from private fish farms in Port-said Governorate, Egypt. Afterward, samples were processed for clinical, post-mortem, and bacteriological examinations. The recovered isolates were tested for antimicrobial susceptibility, phenotypic assessment of virulence factors, pathogeneicity, and PCR-based detection of virulence and antibiotic resistance genes. Results: B. cereus was isolated from 30 (25%) examined fish; the highest prevalence was noticed in the liver (50%). The phylogenetic and sequence analyses of the gyrB gene revealed that the tested B. cereus isolate displayed a high genetic similarity with other B. cereus strains from different origins. All the recovered B. cereus isolates (n =60, 100%) exhibited ß-hemolytic and lecithinase activities, while 90% (54/60) of the tested isolates were biofilm producers. Using PCR, the tested B. cereus isolates harbor nhe, hbl, cytK, pc-plc, and ces virulence genes with prevalence rates of 91.6%, 86.6%, 83.4%, 50%, and 33.4%, respectively. Moreover, 40% (24/60) of the tested B. cereus isolates were multidrug-resistant (MDR) to six antimicrobial classes and carried the bla1, bla2, tetA, and ermA genes. The experimentally infected fish with B. cereus showed variable mortality in direct proportion to the inoculated doses. Conclusion: As far as we know, this is the first report that emphasized the existence of MDR B. cereus in M. seheli that reflects a threat to the public health and the aquaculture sector. Newly emerging MDR B. cereus in M. seheli commonly carried virulence genes nhe, hbl, cytK, and pc-plc, as well as resistance genes bla1, bla2, tetA, and ermA.

5.
AMB Express ; 12(1): 34, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298727

RESUMO

Shiga-toxigenic Escherichia coli (STEC) is incriminated in severe hemorrhagic enteritis in dogs, which is considered a veterinary and public health alarm. To investigate the prevalence, antimicrobial resistance patterns, virulence determinants, and distribution of antimicrobial resistance genes in STEC strains isolated from dogs: 80 fecal samples were obtained from diseased dogs suffering from hemorrhagic diarrhea from pet animal clinics in Ismailia governorate, Egypt. The obtained samples were examined bacteriologically. Moreover, the retrieved isolates were tested for serogrouping, Congo-red binding, antimicrobial resistance, and PCR-based determination of virulence and antimicrobial resistance genes. The prevalence of E. coli in the examined diseased dogs was 23.75% (19/80). The serogrouping of the recovered isolates revealed that 84.2% of the tested isolates were distributed into three serogroups: O146 (36.8%), O111 (31.5%), and O26 (15.7%). Meanwhile, three isolates were untypable (15.8%). Moreover, all the tested E. coli serovars were positive for CR-binding. PCR revealed that the prevalence of stx1, eaeA, hlyA, and stx2 virulence genes was 100%, 100%, 100%, and 47.3%, respectively. Our findings revealed that 31.5% of the recovered isolates showed MDR to five antimicrobial classes and harbored blaTEM, blaCTX-M, tetA, tetB, and sul1 genes. Alarmingly, three isolates were carbapenem-resistant. Two strains harbored the blaKPC gene, while one strain carried the blaNDM-1 gene. Concisely, as far as we know, this is the first study that reported the existence of MDR-STEC in dogs in Egypt. The stx1 gene is the most predominant Shiga toxin gene that accompanied the STEC isolated from hemorrhagic enteritis in dogs. The emerging MDR-STEC in dogs commonly harbors blaTEM, blaCTX-M, sul1, tetA, tetB, and qnrA resistance genes. Meropenem, levofloxacin, and tigecycline exhibited talented antimicrobial activity against MDR-STEC isolated from dogs.

6.
BMC Microbiol ; 21(1): 237, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34445951

RESUMO

BACKGROUND: Avian tuberculosis is a chronic and zoonotic disease that affects a wide variety of birds, mammals, and humans. This study aimed to estimate the frequency of Mycobacterium avium subsp. avium in some domestic birds based on molecular diagnosis, antibiogram profile, and PCR-based detection of inhA, rpoB, rpsL, and otrB antibiotic resistance-related genes. METHODS: A total of 120 fecal samples were collected from small flocks of house-reared domestic birds at Ismailia Governorate, Egypt. The collected samples were processed and subjected to the bacteriological examination. The antimicrobial susceptibility testing of the recovered isolates was performed using the broth microdilution method for the detection of minimum inhibitory concentrations (MICs). The genetic detection of the IS901confirmatory gene, inhA, rpoB, rpsL, and otrB genes was carried out using PCR. RESULTS: The frequency of M. avium subsp. avium was 4.1% (5/120); 10% (4/40) in ducks, and 2.5% (1/10) in geese. The identification of the recovered isolates was confirmed using PCR, where all the tested isolates were positive for IS901confirmatory gene. The results of the broth microdilution method revealed that most of the recovered isolates exhibited multidrug resistance (MDR) to isoniazid, rifampicin, streptomycin, oxytetracycline, and doxycycline, and harbored the inhA, rpoB, rpsL, and otrB genes. CONCLUSION: In brief, to the best of our knowledge this is the first report that emphasized the emergence of avian tuberculosis in house-reared domestic birds in Egypt. The emergence of MDR- M. avium subsp. avium is considered a public health threat. Emerging MDR-M. avium subsp. avium in domestic birds are commonly harbored the IS901, inhA, rpoB, rpsL, and otrB genes. Azithromycin and clofazimine revealed a promising in-vitro antibacterial activity against M. avium subsp. avium.


Assuntos
Antibacterianos/farmacologia , Aves/microbiologia , Farmacorresistência Bacteriana Múltipla , Infecções por Mycobacterium/veterinária , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Animais de Estimação/microbiologia , Animais , Zoonoses Bacterianas/epidemiologia , Patos/microbiologia , Egito/epidemiologia , Fezes/microbiologia , Gansos/microbiologia , Testes de Sensibilidade Microbiana , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium/epidemiologia
7.
Sci Rep ; 11(1): 9476, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947875

RESUMO

Proteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, ß-Lactam-ß-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Proteus mirabilis/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Patos/microbiologia , Egito , Proteus mirabilis/efeitos dos fármacos , Fatores de Virulência/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA