RESUMO
This Letter reports the observation of WZγ production and a measurement of its cross section using 140.1±1.2 fb^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The WZγ production cross section, with both the W and Z bosons decaying leptonically, ppâWZγââ^{'}^{±}νâ^{+}â^{-}γ (â^{(^{'})}=e, µ), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross section is found to be 2.01±0.30(stat)±0.16(syst) fb. The corresponding standard model predicted cross section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50±0.06 fb. The observed significance of the WZγ signal is 6.3σ, compared with an expected significance of 5.0σ.
RESUMO
A key open question in the study of multiparticle production in high-energy pp collisions is the relationship between the "ridge"-i.e., the observed azimuthal correlations between particles in the underlying event that extend over all rapidities-and hard or semihard scattering processes. In particular, it is not known whether jets or their soft fragments are correlated with particles in the underlying event. To address this question, two-particle correlations are measured in pp collisions at sqrt[s]=13 TeV using data collected by the ATLAS experiment at the LHC, with an integrated luminosity of 15.8 pb^{-1}, in two different configurations. In the first case, charged particles associated with jets are excluded from the correlation analysis, while in the second case, correlations are measured between particles within jets and charged particles from the underlying event. Second-order flow coefficients, v_{2}, are presented as a function of event multiplicity and transverse momentum. These measurements show that excluding particles associated with jets does not affect the measured correlations. Moreover, particles associated with jets do not exhibit any significant azimuthal correlations with the underlying event, ruling out hard processes contributing to the ridge.
RESUMO
This letter presents a measurement of the nuclear modification factor of large-radius jets in sqrt[s_{NN}]=5.02 TeV Pb+Pb collisions by the ATLAS experiment. The measurement is performed using 1.72 nb^{-1} and 257 pb^{-1} of Pb+Pb and pp data, respectively. The large-radius jets are reconstructed with the anti-k_{t} algorithm using a radius parameter of R=1.0, by reclustering anti-k_{t} R=0.2 jets, and are measured over the transverse momentum (p_{T}) kinematic range of 158
RESUMO
This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb^{-1} of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688±23(stat) _{-71}^{+75}(syst) fb, to be compared with the standard model prediction of 515_{-42}^{+36} fb at next-to-leading order in QCD.
RESUMO
This Letter reports the observation of τ-lepton-pair production in ultraperipheral lead-lead collisions Pb+PbâPb(γγâττ)Pb and constraints on the τ-lepton anomalous magnetic moment a_{τ}. The dataset corresponds to an integrated luminosity of 1.44 nb^{-1} of LHC Pb+Pb collisions at sqrt[s_{NN}]=5.02 TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a τ-lepton decay, an electron or charged-particle track(s) from the other τ-lepton decay, little additional central-detector activity, and no forward neutrons. The γγâττ process is observed in Pb+Pb collisions with a significance exceeding 5 standard deviations and a signal strength of µ_{ττ}=1.03_{-0.05}^{+0.06} assuming the standard model value for a_{τ}. To measure a_{τ}, a template fit to the muon transverse-momentum distribution from τ-lepton candidates is performed, using a dimuon (γγ⵵) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for a_{τ} is -0.057
RESUMO
A search is made for potential ccc[over ¯]c[over ¯] tetraquarks decaying into a pair of charmonium states in the four muon final state using proton-proton collision data at sqrt[s]=13 TeV, corresponding to an integrated luminosity of 140 fb^{-1} recorded by the ATLAS experiment at LHC. Two decay channels, J/ψ+J/ψâ4µ and J/ψ+ψ(2S)â4µ, are studied. Backgrounds are estimated based on a hybrid approach involving Monte Carlo simulations and data-driven methods. Statistically significant excesses with respect to backgrounds dominated by the single parton scattering are seen in the di-J/ψ channel consistent with a narrow resonance at 6.9 GeV and a broader structure at lower mass. A statistically significant excess is also seen in the J/ψ+ψ(2S) channel. The fitted masses and decay widths of the structures are reported.
RESUMO
Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and p+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb^{-1} of p+Pb and 3.6 pb^{-1} of pp collisions at 5.02 TeV. The yields of charged hadrons with p_{T}^{ch}>0.5 GeV near and opposite in azimuth to jets with p_{T}^{jet}>30 or 60 GeV, and the ratios of these yields between p+Pb and pp collisions, I_{pPb}, are reported. The collision centrality of p+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The I_{pPb} values are consistent with unity within a few percent for hadrons with p_{T}^{ch}>4 GeV at all centralities. These data provide new, strong constraints that preclude almost any parton energy loss in central p+Pb collisions.
RESUMO
A search for a long-lived, heavy neutral lepton (N) in 139 fb^{-1} of sqrt[s]=13 TeV pp collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The N is produced via WâNµ or WâNe and decays into two charged leptons and a neutrino, forming a displaced vertex. The N mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the N with the left-handed neutrino states for the N mass range 3 GeV
RESUMO
A test of CP invariance in Higgs boson production via vector-boson fusion has been performed in the Hâγγ channel using 139 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV collected by the ATLAS detector at the LHC. The optimal observable method is used to probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons, as described by an effective field theory. No sign of CP violation is observed in the data. Constraints are set on the parameters describing the strength of the CP-odd component in the coupling between the Higgs boson and the electroweak gauge bosons in two effective field theory bases: d[over Ë] in the HISZ basis and c_{HW[over Ë]} in the Warsaw basis. The results presented are the most stringent constraints on CP violation in the coupling between Higgs and weak bosons. The 95% C.L. constraint on d[over Ë] is derived for the first time and the 95% C.L. constraint on c_{HW[over Ë]} has been improved by a factor of 5 compared to the previous measurement.
RESUMO
A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139 fb^{-1} of sqrt[s]=13 TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α_{D}ϵ^{2}, in the dark photon mass range of [5, 40] GeV except for the Ï mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments.
RESUMO
A search for new phenomena is presented in final states with two leptons and one or no b-tagged jets. The event selection requires the two leptons to have opposite charge, the same flavor (electrons or muons), and a large invariant mass. The analysis is based on the full run-2 proton-proton collision dataset recorded at a center-of-mass energy of sqrt[s]=13 TeV by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 139 fb^{-1}. No significant deviation from the expected background is observed in the data. Inspired by the B-meson decay anomalies, a four-fermion contact interaction between two quarks (b, s) and two leptons (ee or µµ) is used as a benchmark signal model, which is characterized by the energy scale and coupling, Λ and g_{*}, respectively. Contact interactions with Λ/g_{*} lower than 2.0 (2.4) TeV are excluded for electrons (muons) at the 95% confidence level, still far below the value that is favored by the B-meson decay anomalies. Model-independent limits are set as a function of the minimum dilepton invariant mass, which allow the results to be reinterpreted in various signal scenarios.
RESUMO
A search for charged leptons with large impact parameters using 139 fb^{-1} of sqrt[s]=13 TeV pp collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon, and stau masses up to 720, 680, and 340 GeV, respectively, are excluded at 95% confidence level, drastically improving on the previous best limits from LEP.
RESUMO
The first measurement of longitudinal decorrelations of harmonic flow amplitudes v_{n} for n=2-4 in Xe+Xe collisions at sqrt[s_{NN}]=5.44 TeV is obtained using 3 µb^{-1} of data with the ATLAS detector at the LHC. The decorrelation signal for v_{3} and v_{4} is found to be nearly independent of collision centrality and transverse momentum (p_{T}) requirements on final-state particles, but for v_{2} a strong centrality and p_{T} dependence is seen. When compared with the results from Pb+Pb collisions at sqrt[s_{NN}]=5.02 TeV, the longitudinal decorrelation signal in midcentral Xe+Xe collisions is found to be larger for v_{2}, but smaller for v_{3}. Current hydrodynamic models reproduce the ratios of the v_{n} measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions.
RESUMO
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with VV=W^{±}W^{∓} or ZZ pairs from a decay of a dark Higgs boson s is searched for using 139 fb^{-1} of pp collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The sâV(qq[over ¯])V(qq[over ¯]) decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted VV pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with m_{s}>160 GeV are excluded.
RESUMO
The yield of charged particles opposite to a Z boson with large transverse momentum (p_{T}) is measured in 260 pb^{-1} of pp and 1.7 nb^{-1} of Pb+Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark-gluon plasma created in Pb+Pb collisions. Compared with pp collisions, charged-particle yields in Pb+Pb collisions show significant modifications as a function of charged-particle p_{T} in a way that depends on event centrality and Z boson p_{T}. The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p_{T} regime difficult to measure through other channels.
RESUMO
A search for lepton-flavor-violating Zâeτ and Zâµτ decays with pp collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb^{-1} of Run 2 pp collisions at sqrt[s]=13 TeV and is combined with the results of a similar ATLAS search in the final state in which the τ lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying τ leptons significantly improves the sensitivity reach for Zââτ decays. The Zââτ branching fractions are constrained in this analysis to B(Zâeτ)<7.0×10^{-6} and B(Zâµτ)<7.2×10^{-6} at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: B(Zâeτ)<5.0×10^{-6} and B(Zâµτ)<6.5×10^{-6} at 95% confidence level.
RESUMO
A search for Higgs boson decays into a Z boson and a light resonance in two-lepton plus jet events is performed, using a pp collision dataset with an integrated luminosity of 139 fb^{-1} collected at sqrt[s]=13 TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95% confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a Z boson and the signal resonance, with values in the range 17-340 pb (16_{-5}^{+6}-320_{-90}^{+130} pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 and 100 pb (100_{-30}^{+40} and 100_{-30}^{+40} pb) for the η_{c} and J/ψ hypotheses, respectively.
RESUMO
This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search AâBC, for m_{A}â¼O(TeV), m_{B},m_{C}â¼O(100 GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 sqrt[s]=13 TeV pp collision dataset of 139 fb^{-1} recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with m_{A}, m_{B}, and m_{C}. For example, when m_{A}=3 TeV and m_{B}â³200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on m_{C}. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.
RESUMO
A study of the charge conjugation and parity (CP) properties of the interaction between the Higgs boson and top quarks is presented. Higgs bosons are identified via the diphoton decay channel (Hâγγ), and their production in association with a top quark pair (tt[over ¯]H) or single top quark (tH) is studied. The analysis uses 139 fb^{-1} of proton-proton collision data recorded at a center-of-mass energy of sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Assuming a CP-even coupling, the tt[over ¯]H process is observed with a significance of 5.2 standard deviations. The measured cross section times Hâγγ branching ratio is 1.64_{-0.36}^{+0.38}(stat)_{-0.14}^{+0.17}(sys) fb, and the measured rate for tt[over ¯]H is 1.43_{-0.31}^{+0.33}(stat)_{-0.15}^{+0.21}(sys) times the Standard Model expectation. The tH production process is not observed and an upper limit on its rate of 12 times the Standard Model expectation is set. A CP-mixing angle greater (less) than 43 (-43)° is excluded at 95% confidence level.
RESUMO
A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the τ^{+}τ^{-} decay with at least one τ-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the standard model. In the M_{h}^{125} scenario of the minimal supersymmetric standard model, values of tanß>8 and tanß>21 are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where tanß is the ratio of the vacuum expectation values of the two Higgs doublets.