Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dose Response ; 20(1): 15593258211068621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250407

RESUMO

Quantification of scattered photons in addition to unscattered primary particles, under realistic exposure scenario, is best dealt with a parameter called "Buildup factor". The aim of this work is to simulate the transmission buildup factor (BUF) of gamma-ray in the energy range .15-15 MeV for 20 human tissues and organs using the Geant4 (version 10.5) Monte Carlo simulation followed by a geometrical progression (GP) parameterization procedure. Firstly, we verified the accuracy of Geant4 ability to predict the effective transmitted dose according to published data. Also, a comparison of simulated BUF for different geometrical configurations was carried out for some tissues and source energies. Then, we checked out the linear dependency of the K parameter (BUF is function of K) function of mean free path (mfp). Finally, we developed a fitting procedure according to GP method for BUF corresponding to 20 tissues and organs and different mfp (from 1 to 8) for energy range .15-15 MeV. We found a good agreement with previous published data. Proper comprehension of BUF for tissues leads to carefully controlling the energy absorption in the human body. Consequently, provided BUF could be of great interest for estimating safe dose levels in medical imaging and radiation therapy.

2.
Dose Response ; 20(1): 15593258211068625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197813

RESUMO

Deterministic particle transport codes usually take into account scattered photons with correct attenuation laws and application of buildup factor to incident beam. Transmission buildup factors for adipose, bone, muscle, and skin human tissues, as well as for various combinations of these media for point isotropic photon source with energies of .15, 1.5 and 15 MeV, for different thickness of layers, were carried out using Geant4 (version 10.5) simulation toolkit. Also, we performed the analysis of existing multilayered shield fitting models (Lin and Jiang, Kalos, Burke and Beck) of buildup factor and the proposition of a new model. We found that the model combining those of Burke and Beck, for low atomic number (Z) followed by high Z materials and Kalos 1 for high Z followed by low Z materials, accurately reproduces simulation results with approximated deviation of 3 ± 3%, 2 ± 2%, and 3 ± 2% for 2, 3, and 4 layers, respectively. Since buildup factors are the key parameter for point kernel calculations, a correct study can be of great interest to the large community of radiation physicists, in general, and to medical imaging and radiotreatment physicists, especially.

3.
Materials (Basel) ; 14(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207950

RESUMO

Cobalt (Co) doped zinc oxide (ZnO) microcrystals (MCs) are prepared by using the hydrothermal method from the precursor's mixture of zinc chloride (ZnCl2), cobalt-II chloride hexahydrate (CoCl2·6H2O), and potassium hydroxide (KOH). The smooth round cylindrical morphologies of the synthesized microcrystals of Co-doped ZnO show an increase in absorption with the cobalt doping. The antibacterial activity of the as-obtained Co-doped ZnO-MCs was tested against the bacterial strains of gram-negative (Escherichia coli, Klebsiella pneumonia) and gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes) via the agar well diffusion method. The zones of inhibition (ZOI) for Co-doped ZnO-MCs against E. coli and K. pneumoniae were found to be 17 and 19 mm, and 15 and 16 mm against S. Aureus and S. pyogenes, respectively. The prepared Co-doped ZnO-MCs were thus established as a probable antibacterial agent against gram-negative bacterial strains.

4.
Dose Response ; 19(3): 15593258211028467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290574

RESUMO

This work concerns study of self-absorption factor (SAF) and dose rate constants of zirconium-89 (89Zr) for the purpose of radiation protection in positron emission tomography (PET) and to compare them with those of 18F-deoxyglucose (18F-FDG). We analyzed the emitted energy spectra by 18F and 89Zr through anthropomorphic phantom and calculated the absorbed energy using Monte Carlo method. The dose rate constants for both radionuclides were estimated with 2 different fluence-to-effective dose conversion coefficients. Our estimated SAF value of 0.65 for 18F agreed with the recommendation of the American Association of Physicists in Medicine (AAPM). The SAF for 89Zr was in the range of 0.61-0.66 depending on the biodistribution. Using the fluence-to-effective dose conversion coefficients recommended jointly by the American National Standards Institute and the American Nuclear Society (ANSI/ANS), the dose rate at 1 m from the patient for 18F was 0.143 µSv·MBq-1·hr-1, which is consistent with the AAPM recommendation, while that for 89Zr was 0.154 µSv·MBq-1·hr-1. With the conversion coefficients currently recommended by the International Committee on Radiological Protection (ICRP), the dose rate estimates were lowered by 2.8% and 2.6% for 89Zr and 18F, respectively. Also, we observed that the AAPM derived dose is an overestimation near the patient, compared to our simulations, which can be explained by the biodistribution nature and the assumption of the point source. Thus, we proposed new radiation protection factors for 89Zr radionuclide.

5.
Clin Breast Cancer ; 18(3): e381-e392, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28781021

RESUMO

Breast cancer is the most frequently diagnosed noncutaneous malignancy in women living in Gulf Cooperation Council countries. The present report aimed to highlight the similarities and variations in breast cancer incidence, age at diagnosis, clinicopathologic features, molecular characteristics, and lifestyle factors that contribute to an increasing incidence of breast cancer compared with neighboring Arab and westernized countries. The data presented, although having important implications for policy makers, also highlights the need for further research. Such research would ensure that effective prevention and detection strategies are tailored to the specific needs of the Gulf women such that the management of breast cancer is optimized.


Assuntos
Neoplasias da Mama/epidemiologia , Comparação Transcultural , Cooperação Internacional , Sistema de Registros/estatística & dados numéricos , Austrália/epidemiologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/prevenção & controle , Feminino , Humanos , Incidência , Oriente Médio/epidemiologia , Fatores de Risco , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA