Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biomacromolecules ; 25(9): 5798-5808, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39190621

RESUMO

Microporous annealed particle (MAP) hydrogels are a promising class of in situ-forming scaffolds for tissue repair and regeneration. While an expansive toolkit of annealing chemistries has been described, the effects of different annealing chemistries on MAP hydrogel properties and performance have not been studied. In this study, we address this gap through a controlled head-to-head comparison of poly(ethylene glycol) (PEG)-based MAP hydrogels that were annealed using tetrazine-norbornene and thiol-norbornene click chemistry. Characterization of material properties revealed that tetrazine click annealing significantly increases MAP hydrogel shear storage modulus and results in slower in vitro degradation kinetics when microgels with a higher cross-link density are used. However, these effects are muted when the MAP hydrogels are fabricated from microgels with a lower cross-link density. In contrast, in vivo testing in murine critical-sized calvarial defects revealed that these differences in physicochemical properties do not translate to differences in bone volume or calvarial defect healing when growth-factor-loaded MAP hydrogel scaffolds are implanted into mouse calvarial defects. Nonetheless, the impact of tetrazine click annealing could be important in other applications and should be investigated further.


Assuntos
Química Click , Hidrogéis , Polietilenoglicóis , Hidrogéis/química , Animais , Camundongos , Química Click/métodos , Polietilenoglicóis/química , Porosidade , Alicerces Teciduais/química , Norbornanos/química , Engenharia Tecidual/métodos
2.
Adv Healthc Mater ; : e2303810, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749006

RESUMO

Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell-laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)-nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating ß-islet cells into the PEG microparticles and endothelial cells in the GelMA-nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling.

3.
Nat Commun ; 15(1): 3283, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637507

RESUMO

While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males. Furthermore, immune cell recruitment is higher in PEG-sensitized mice administered the PEG-based treatment than their naive counterparts. Interestingly, naive controls that were administered a PEG-based treatment also develop anti-PEG antibodies. Sex differences in bone formation and immune cell recruitment are also apparent. Overall, these findings indicate that anti-PEG immune responses can impact tissue engineering efficacy and highlight the need for further investigation.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Feminino , Masculino , Camundongos , Animais , Materiais Biocompatíveis/farmacologia , Osteogênese , Regeneração Óssea , Polietilenoglicóis/farmacologia , Hidrogéis/farmacologia
4.
Adv Healthc Mater ; : e2303912, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470994

RESUMO

Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.

5.
Biotechnol Bioeng ; 121(1): 219-227, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37807712

RESUMO

Methods for culturing oxygen-sensitive cells and organisms under anaerobic conditions are vital to biotechnology research. Here, we report a biomaterial-based platform for anaerobic culture that consists of glucose oxidase (GOX) functionalized alginate microparticles (ALG-GOX), which are designed to deplete dissolved [O2 ] through enzymatic activity. ALG-GOX microparticles were synthesized via a water-in-oil emulsion and had a size of 132.0 ± 51.4 µm. Despite having a low storage modulus, the microparticles remained stable under aqueous conditions due to covalent crosslinking through amide bonds. Enzyme activity was tunable based on the loaded GOX concentration, with a maximum activity of 3.6 ± 0.3 units/mg of microparticles being achieved at an initial loading concentration of 5 mg/mL of GOX in alginate precursor solution. High enzyme activity in ALG-GOX microparticles resulted in rapid oxygen depletion, producing a suitable environment for anaerobic culture. Microparticles loaded with both GOX and catalase (ALG-GOX-CAT) to reduce H2 O2 buildup exhibited sustained activity for potential long-term anaerobic culture. ALG-GOX-CAT microparticles were highly effective for the anaerobic culture of Bacteroides thetaiotaomicron, with 10 mg/mL of ALG-GOX-CAT microparticles supporting the same level of growth in an aerobic environment compared to an anaerobic chamber after 16 h (8.70 ± 0.96 and 10.03 ± 1.03 million CFU, respectively; N.S. p = 0.07). These microparticles could be a valuable tool for research and development in biotechnology.


Assuntos
Alginatos , Técnicas de Cultura de Células , Alginatos/química , Anaerobiose , Glucose Oxidase/química
6.
ACS Appl Bio Mater ; 6(9): 3683-3695, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37584641

RESUMO

Granular hydrogels have recently emerged as promising biomaterials for tissue engineering and 3D-printing applications, addressing the limitations of bulk hydrogels while exhibiting desirable properties such as injectability and high porosity. However, their structural stability can be improved with post-injection interparticle cross-linking. In this study, we developed granular hydrogels with interparticle cross-linking through reversible and dynamic covalent bonds. We fragmented photo-cross-linked bulk hydrogels to produce aldehyde or hydrazide-functionalized microgels using chondroitin sulfate. Mixing these microgels facilitated interparticle cross-linking through reversible hydrazone bonds, providing shear-thinning and self-healing properties for injectability and 3D printing. The resulting granular hydrogels displayed high mechanical stability without the need for secondary cross-linking. Furthermore, the porosity and sustained release of growth factors from these hydrogels synergistically enhanced cell recruitment. Our study highlights the potential of reversible interparticle cross-linking for designing injectable and 3D printable therapeutic delivery scaffolds using granular hydrogels. Overall, our study highlights the potential of reversible interparticle cross-linking to improve the structural stability of granular hydrogels, making them an effective biomaterial for use in tissue engineering and 3D-printing applications.


Assuntos
Hidrogéis , Microgéis , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Impressão Tridimensional
7.
Int J Pharm ; 640: 123042, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37178789

RESUMO

Currently there are no compendial assays for testing drug release from rectal suppositories. It is therefore essential to study different in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for identifying a suitable technique to compare in vitro drug release and to predict in vivo performance of rectal suppositories. In the present study, three different rectal suppository formulations of mesalamine (CANASA, Generic, and In-house) were studied for in vitro bioequivalence. All the different suppository products were characterized by performing weight variation, content uniformity, hardness, melting time, and pH tests. Viscoelastic behavior of the suppositories was also tested both in presence and absence of mucin. Four different IVRT techniques such as Dialysis, Horizontal Ussing Chamber, Vertical Franz cell, and USP apparatus 4. IVPT studies were performed using Horizontal Ussing chamber and Vertical Franz cell methods. Q1/Q2 equivalent products (CANASA, Generic) and a half-strength product were studied to understand the reproducibility, bio relevance, and discriminatory ability of the IVRT and IVPT methods. This study is the first of its kind where molecular docking studies were performed to determine the potential interactions of drug (mesalamine) with mucin, IVRT studies were conducted with and without the presence of mucin, and porcine rectal mucosa was used to perform IVPT tests. The USP 4 method and Horizontal Ussing chamber methods were found to be suitable IVRT and IVPT techniques, respectfully, for rectal suppositories. RLD (Reference Listed Drug) and Generic rectal suppositories were found to exhibit similar release rate and permeation profiles obtained from USP 4, and the IVPT studies, respectfully. Wilcoxon Rank Sum/Mann-Whitney rank test, conducted for the IVRT profiles obtained using USP 4 method, proved the sameness of RLD and Generic suppository products.


Assuntos
Mesalamina , Mucinas , Animais , Suínos , Supositórios , Reprodutibilidade dos Testes , Simulação de Acoplamento Molecular
8.
J Mater Chem B ; 11(8): 1749-1759, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723375

RESUMO

Continuous glucose monitoring (CGM) devices have the potential to lead to better disease management and improved outcomes in patients with diabetes. Chemo-optical glucose sensors offer a promising, accurate, long-term alternative to the current CGMs that require frequent calibration and replacement. Recently, we have proposed glucose sensor designs using phosphorescence lifetime-based measurement of chemo-optical glucose sensing microdomains embedded within alginate hydrogels. Due to the poor long-term stability of calcium-crosslinked alginate, we propose poly(ethylene glycol) (PEG) hydrogels synthesized via thiol-Michael addition chemistry as an alternative hydrogel carrier. The objective of this study was to evaluate the suitability of Michael addition crosslinked PEG hydrogels compared to calcium crosslinked alginate hydrogels for encapsulating glucose-sensing microdomains. PEG hydrogels crosslinked via thiol-vinyl sulfone addition achieved gelation in under 5 minutes, resulting in an even distribution of sensing microdomains. The shear storage modulus of the PEG hydrogels was tunable from 2.2 ± 0.1 kPa to 9.5 ± 1.8 kPa, which was comparable to the alginate hydrogels (10.5 ± 0.8 kPa), and the inclusion of microdomains did not significantly impact stiffness. The high water content of PEG hydrogels resulted in high glucose permeability that closely corresponded to the glucose permeability of alginate (D = 0.09 and 0.12 cm2 s-1, respectively; p = 0.47), but the PEG hydrogels exhibited superior stability. Both PEG and alginate-embedded sensors exhibited a sensing range up to ∼200 mg dL-1 glucose. The lower limits of detection (LOD) for PEG and alginate-based glucose sensors were 19.8 and 20.6 mg dL-1 with a difference of just 4.2% variation. The small difference between PEG and alginate embedded sensors indicates that their sensing properties are primarily determined by the glucose sensing microdomains rather than the hydrogel matrix. Overall, the results of this study indicate that Michael addition-crosslinked PEG hydrogels are a promising platform for encapsulation of chemo-optical glucose sensing microdomains.


Assuntos
Técnicas Biossensoriais , Glucose , Humanos , Cálcio , Automonitorização da Glicemia , Glicemia , Materiais Biocompatíveis/química , Compostos de Sulfidrila , Hidrogéis/química , Polietilenoglicóis/química , Alginatos/química
9.
ACS Biomater Sci Eng ; 9(2): 642-650, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36729490

RESUMO

Lung tissue biopsies can result in a leakage of blood (hemothorax) and air (pneumothorax) from the biopsy tract, which threatens the patient with a collapsed lung and other complications. We have developed a lung biopsy tract sealant based on a thiol-ene-crosslinked PEG hydrogel and polyurethane shape memory polymer (SMP) foam composite. After insertion into biopsy tracts, the PEG hydrogel component contributes to sealing through water-driven swelling, whereas the SMP foam contributes to sealing via thermal actuation. The gelation kinetics, swelling properties, and rheological properties of various hydrogel formulations were studied to determine the optimal formulation for composite fabrication. Composites were then fabricated via vacuum infiltration of the PEG hydrogel precursors into the SMP foam followed by thermal curing. After drying, the composites were crimped to enable insertion into biopsy tracts. Characterization revealed that the composites exhibited a slight delay in shape recovery compared to control SMP foams. However, the composites were still able to recover their shape in a matter of minutes. Cytocompatibility testing showed that leachable byproducts can be easily removed by washing and washed composites were not cytotoxic to mouse lung fibroblasts (L929s). Benchtop testing demonstrated that the composites can be easily deployed through a cannula, and the working time for deployment after exposure to water was 2 min. Furthermore, testing in an in vitro lung model demonstrated that the composites were able to effectively seal a lung biopsy tract and prevent air leakage. Collectively, these results show that the PEG hydrogel/SMP foam composites have the potential to be used as lung biopsy tract sealants to prevent pneumothorax post-lung biopsy.


Assuntos
Pneumotórax , Materiais Inteligentes , Animais , Camundongos , Hidrogéis , Materiais Biocompatíveis , Biópsia
10.
Macromolecules ; 56(21): 8518-8528, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38357014

RESUMO

Polymer-polymer aqueous two-phase systems (ATPSs) are attractive for microgel synthesis, but given the complexity of phase separation, predicting microgel material properties from ATPS formulations is not trivial. The objective of this study was to determine how the phase diagram of a poly(ethylene glycol) (PEG) and dextran ATPS is related to the material properties of PEG microgel products. PEG-dextran ATPSs were prepared from four-arm 20 kDa PEG-norbornene and 40 kDa dextran in phosphate buffered saline (PBS), and the phase diagram was constructed. PEG microgels were synthesized from five ATPS formulations using an oligopeptide cross-linker and thiol-norbornene photochemistry. Thermogravimetric analysis (TGA) revealed that the polymer concentration of microgel pellets linearly correlates with the average concentration of PEG in the ATPS rather than the separated phase compositions, as determined from the phase diagram. Atomic force microscopy (AFM) and bulk rheology studies demonstrated that the mechanical properties of microgels rely on both the average concentration of PEG in the ATPS and the ATPS volume ratio as determined from the phase diagram. These findings suggest that PEG-dextran ATPSs undergo homogenization upon mixing, which principally determines the material properties of the microgels upon gelation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA