Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053947

RESUMO

Embryonic and pluripotent stem cells hold great promise in generating ß-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these ß-like cells still fail to fully mirror the adult ß-cell physiology. For their proper growth and functioning, ß-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where ß-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in ß-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that ß-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the ß-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of ß-cell differentiation capacity in vitro.


Assuntos
Diferenciação Celular/genética , Forma Celular/genética , Células Secretoras de Insulina/citologia , Mecanotransdução Celular/genética , Fenômenos Biofísicos , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA