Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 518, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177658

RESUMO

A novel mathematical analysis is established that summits the key features of peristaltic propulsion for a non-Newtonian micropolar fluid with the electroosmosis and heat transfer enhancement using nanoparticles. In such physiological models, the channel have a symmetric configuration in accordance with the biological problem. Being mindful of this fact, we have disclosed an integrated analysis on symmetric channel that incorporates major physiological applications. The creeping flow inference is reviewed to model this realistic problem. Flow equations are model using cartesian coordinates and simplified using long wave length and low Reynolds number approximation. Nonlinear linear couple equations are solving numerically. We have studied the variation in the properties of nanofluid developed by two different types of nanoparticles (i.e. Cu and Ag nanoparticles). Graphical illustrations are unveiled to highlight the physical aspects of nanoparticles and flow parameters. The exploration demonstrates that the micro-rotation of the nano-liquid elements enhances the thermal conductivity of the fluid movement. The effect of micropolar fluid parameters on mean flow and pressure variables is also presented.

2.
Sci Rep ; 14(1): 1474, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233420

RESUMO

The current investigation examines the peristaltic flow, in curved conduit, having complaint boundaries for nanofluid. The effects of curvature are taken into account when developing the governing equations for the nano fluid model for curved channels. Nonlinear & coupled differential equations are then simplified by incorporating the long wavelength assumption along with smaller Reynolds number. The homotopy perturbation approach is used to analytically solve the reduced coupled differential equations. The entropy generation can be estimated through examining the contributions of heat and fluid viscosities. The results of velocity, temperature, concentration, entropy number, and stream functions have been plotted graphically in order to discuss the physical attributes of the essential quantities. Increase in fluid velocity within the curved conduit is noticed for higher values of thermophoresis parameter and Brownian motion parameter further entropy generation number is boosted by increasing values of Grashof number.

3.
Sci Rep ; 14(1): 1475, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233426

RESUMO

The magnetic force effects and differently shaped nano-particles in diverging tapering arteries having stenoses are being studied in current research via blood flow model. There hasn't been any research done on using metallic nanoparticles of different shapes with water as the base fluid. A radially symmetric but axially non-symmetric stenosis is used to depict the blood flow. Another significant aspect of our research is the study of symmetrical distribution of wall shearing stresses in connection with resistive impedance, as well as the rise of these quantities with the progression of stenosis. Shaping nanoparticles in accordance with the understanding of blood flow in arteries offers numerous possibilities for improving drug delivery, targeted therapies, and diagnostic imaging in the context of cardiovascular and other vascular-related diseases. Exact solutions for different flow quantities namely velocity, temperature, resistance impedance, boundary shear stress, and shearing stress at the stenosis throat, have been assessed. For various parameters of relevance for Cu-water, the graphical results of several types of tapered arteries (i.e. diverging tapering) have been explored.


Assuntos
Artérias , Nanopartículas , Humanos , Constrição Patológica , Artérias/fisiologia , Hemodinâmica , Água , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Estresse Mecânico
4.
Sci Rep ; 13(1): 21891, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082095

RESUMO

In the present article we consider the physical model of two-dimensional Casson hybrid nanofluids flow, which is magnetized and thermally radiative, laminar, incompressible inside the channel. Flow equations have been modelled for two dimensional axial and radial velocity components [Formula: see text] along [Formula: see text] and [Formula: see text] along the [Formula: see text]. There exists temperature [Formula: see text] which is constant for upper and lower walls. The Casson nanofluids model with nano type particles includes heat transfer effect between two stretched and shrinking walls of the channel was constructed. The continuity, momentum and energy equations are modelled in cartesian coordinates system. The finite element technique is used to evaluate numerical solutions for velocity, temperature, Skin friction and Nusselt number. It is evident that the hybrid Casson nanofluids exhibit opposite behaviors in the stretching and shrinking cases near the upper and lower walls of the channel. It is also observed that in the stretching case, increasing the values of the Casson parameter leads to a rise in both shear stress and heat transfer rate for both plates of the channel. However, the results contradict this trend in the shrinking case. Understanding the thermal characteristics of magnetized hybrid fluids can be applied to the design of advanced cooling systems in engineering applications, biomedical fluid dynamic, in energy system this study can be applied to improve the efficiency of energy systems where fluid flow and heat transfer play crucial roles. Further use of nanofluids suggests a connection to nanotechnology, and the study may have implications for the development of advanced nanomaterial-based heat transfer fluids.

5.
Heliyon ; 9(7): e17658, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449134

RESUMO

This research investigates two-dimensional MHD incompressible boundary layer Hyperbolic Tangent nanofluid flow across a non-linear stretching plate. Similarity transformations are employed to convert the governing non-linear partial differential equations (PDEs) into coupled non-linear ordinary differential equations (ODEs). The MATLAB built-in routine bvp4c has been used for finding the numerical solutions of the dimensionless velocity, temperature, and concentration profiles. The current findings are validated with already published results. The influence of some important parameters on the velocity, temperature, and concentration profiles are displayed through graphs and tables. It is observed that for increasing values of magnetic parameter M and hyperbolic Tangent parameter We, the boundary layer thickness of the velocity profile decreases while it increases for the temperature profile.

6.
Sci Rep ; 13(1): 8376, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225740

RESUMO

Shear thinning fluids are widely used in the food and polymer industries due to their unique flow characteristics. The flow behavior of these fluids has been commonly studied using the Powell Eyring model under a small shear rate assumption. However, this assumption is not always valid. In this study, we explore the transport characteristics of a Powell Eyring fluid over a variable thicker sheet, not only at small shear rates but also at medium and high shear rates. Furthermore, we calculate the rate of entropy generation based on the assumptions. Generalized Powell-Eyring model of viscosity is used for the fluid, representing the re-arrangements of molecules in the forward and backward directions through the theory of potential energy. The model concludes the sensitivity of the viscosity from zero to infinite shear rate along time sale and exponent parameters. The model is used in the transport phenomena equations. The solution of the equation is obtained by using the numerical method and used to calculate the rate of entropy generation. The results are presented in the form of velocity and temperature profiles, the average rate of entropy generation, skin friction coefficient and Nusselt number under the influence of various viscosity parameters. It is found that velocity and temperature profiles are decreased and increased respectively against the time scale parameter.

7.
Sci Rep ; 12(1): 16735, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202970

RESUMO

The article examines a water alumina nanofluid and heat transfer through the three-dimensional annular. The annular is constructed by the two concentric cylinders in which the inner cylinder can rotate along the tangential direction at a constant speed. A slip boundary condition will be imposed to vanish the viscous effect in the vicinity of the outer cylinder wall. Moreover, the rotating cylinder is kept at a hot temperature, and the outer one is at a cold temperature. A three-dimensional incompressible Navier Stokes and energy equations were carried in cylindrical coordinates. The simulation was observed using the emerging computational tool of COMSOL Multiphysics 5.6, which implements Least Square Galerkin's scheme of finite element method. The parametric study will be done by altering the speed of rotation of the inner cylinder from 1 to 4, volume fraction from 0.001 to 0.9, and the aspect ratio from 0.4 to 0.6 for a fixed Reynolds number of 35,000. The results will be displayed with graphs and tables for average values of the Nusselt number, the percentage change in the temperature, and the skin friction at the middle plan. It was found that the average Nusselt number at the middle of the annular increases before the volume fraction of 0.2 and then decreases for all values of the volume fraction for a fixed rotation of the inner cylinder. The average percentage change relative to the inner cylinder's hot temperature decreases with the volume fraction increase for the fixed rotation. Also, it was found that the quantity of nanoparticles in the domain is improving the average skin friction in the middle of the channel, and it can be reduced by improving the rotation of the inner cylinder by about 10-23% strictly depending upon the aspect ratio for a particular case.

8.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014601

RESUMO

The current article discusses the outcomes of the double diffusion convection of peristaltic transport in Sisko nanofluids along an asymmetric channel having an inclined magnetic field. Consideration is given to the Sisko fluid model, which can forecast both Newtonian and non-Newtonian fluid properties. Lubricating greases are the best examples of Sisko fluids. Experimental research shows that most realistic fluids, including human blood, paint, dirt, and other substances, correspond to Sisko's proposed definition of viscosity. Mathematical modelling is considered to explain the flow behavior. The simpler non-linear PEDs are deduced by using an elongated wavelength and a minimal Reynolds number. The expression is also numerically calculated. The impacts of the physical variables on the quantities of flow are plotted graphically as well as numerically. The results reveal that there is a remarkable increase in the concentration, temperature, and nanoparticle fraction with the rise in the Dufour and thermophoresis variables.

9.
Numer Methods Partial Differ Equ ; 38(4): 760-776, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33362341

RESUMO

In the present investigations, we construct a new mathematical for the transmission dynamics of corona virus (COVID-19) using the cases reported in Kingdom of Saudi Arabia for March 02 till July 31, 2020. We investigate the parameters values of the model using the least square curve fitting and the basic reproduction number is suggested for the given data is ℛ0 ≈ 1.2937. The stability results of the model are shown when the basic reproduction number is ℛ0 < 1. The model is locally asymptotically stable when ℛ0 < 1. Further, we show some important parameters that are more sensitive to the basic reproduction number ℛ0 using the PRCC method. The sensitive parameters that act as a control parameters that can reduce and control the infection in the population are shown graphically. The suggested control parameters can reduce dramatically the infection in the Kingdom of Saudi Arabia if the proper attention is paid to the suggested controls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA