Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34619, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149004

RESUMO

Heavy metals can cause serious environmental and human health problems, and their removal from wastewater is critical to protect our planet and communities. This study investigated the ability of crushed pomegranate peel to remove mercury and cadmium ions from contaminated water as a function of different experimental parameters. The experimental results showed that the pH of the solution influenced the adsorptive removal of heavy metals, with the best performance observed at pH 4.8. Optimization studies and process balance modeling were performed to optimize the process for commercial use. The performance of pomegranate peel was compared with that of other materials, and the highest adsorption capacities for both cadmium (Ca (II)) and mercury (Hg (II)) ions were observed to be 89.59 and 42.125 mg/g, respectively. The results were interpreted using the Langmuir model, which provided the best fit to describe the behavior of the process.

2.
J Mol Model ; 30(8): 297, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085447

RESUMO

CONTEXT: Phographene and its family member structures are of the newly proposed semiconductors for detection of chemicals. That is, in this project, the potential of using α-phographene (α-POG) both for adsorption and detection of five types of the most important air pollutant gases containing SO2, AsH3, CF3H, NO2, and CO2 species were investigated.  The results of the time dependent density functional theory (TD-DFT) calculations indicate that during the adsorption of NO2, and SO2 by the sorbent, big redshifts occur (up to 866.2 nm, and 936.5, respectively) resulting in considerable changes in the orbitals and the electronic structures of the systems. Moreover, the results of the thermodynamic calculations reveal that α-POG could selectively adsorb SO2, NO2, and AsH3 gases (with different orders), but it could not adsorb the two other gases.Finally, the outcome of the band gap calculations shows that between all mentioned gases, α-POG could selectively detect the presence of SO2, and then NO2; while, this nanosheet could not sense the existence of AsH3, CF3H, or CO2 gases. METHODS: All of the calculations were carried out by using the Gaussian 03 quantum chemical package. In addition, the physiochemical parameters were extracted from the output files for further calculations. Studies on all saddle points and the following calculations were performed applying the B3LYP/6-311g(d,p) level of theory.

3.
Pathol Res Pract ; 260: 155444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986361

RESUMO

Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.


Assuntos
Inflamassomos , Neoplasias Pulmonares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Inflamassomos/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA