Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 73: 103281, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31706246

RESUMO

NAFLD often results in cardiovascular, intestinal and renal complications. Previous reports from our laboratory highlighted NAFLD induced ectopic inflammatory manifestations in the kidney that gave rise to glomerular inflammation. Extending our studies, we hypothesized that existing inflammatory conditions in NAFLD could make the kidneys more susceptible to environmental toxicity. Our results showed that exposure of Microcystin-LR (MC) in NAFLD mice caused a marked increase in cellular scarring with a concomitant increase in mesangial cell activation as observed by increased α-SMA in the extracellular matrix surrounding the glomeruli. Renal tissue surrounding the glomeruli also showed increased NOX2 activation as shown by greater co-localization of p47 Phox and its membrane component gp91Phox both in the mesangial cell and surrounding tissue. Mechanistically, mesangial cells incubated with apocynin, nitrone spin trap DMPO and miR21 inhibitor showed significantly decreased α-SMA, miR21 levels and proinflammatory cytokine release in the supernatant. In parallel, mice lacking miR21, known to be activated by NOX2, when exposed to MC in NAFLD showed decreased mesangial cell activation. Strikingly, phenyl boronic acid incubated cells that were exposed to MC showed significantly decreased mesangial cell activation showing that peroxynitrite might be the major reactive species involved in mediation of the activation process, release of proinflammatory micro RNAs and cytokines that are crucial for renal toxicity. Thus, in conclusion, MC exposure causes NOX2 activation that leads to mesangial cell activation and toxicity via release of peroxynitrite that also represses PTEN by the upregulation of miR21 thus amplifying the toxicity.


Assuntos
Microcistinas/toxicidade , Hepatopatia Gordurosa não Alcoólica , Poluentes Químicos da Água/toxicidade , Animais , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias , Camundongos , MicroRNAs , Transdução de Sinais
2.
Toxicol Appl Pharmacol ; 350: 64-77, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29751049

RESUMO

Most of the associated pathologies in Gulf War Illness (GWI) have been ascribed to chemical and pharmaceutical exposures during the war. Since an increased number of veterans complain of gastrointestinal (GI), neuroinflammatory and metabolic complications as they age and there are limited options for a cure, the present study was focused to assess the role of butyrate, a short chain fatty acid for attenuating GWI-associated GI and metabolic complications. Results in a GWI-mouse model of permethrin and pyridostigmine bromide (PB) exposure showed that oral butyrate restored gut homeostasis and increased GPR109A receptor copies in the small intestine (SI). Claudin-2, a protein shown to be upregulated in conditions of leaky gut was significantly decreased following butyrate administration. Butyrate decreased TLR4 and TLR5 expressions in the liver concomitant to a decrease in TLR4 activation. GW-chemical exposure showed no clinical signs of liver disease but a significant alteration of metabolic markers such as SREBP1c, PPAR-α, and PFK was evident. Liver markers for lipogenesis and carbohydrate metabolism that were significantly upregulated following GW chemical exposure were attenuated by butyrate priming in vivo and in human primary hepatocytes. Further, Glucose transporter Glut-4 that was shown to be elevated following liver complications were significantly decreased in these mice after butyrate administration. Finally, use of TLR4 KO mice completely attenuated the liver metabolic changes suggesting the central role of these receptors in the GWI pathology. In conclusion, we report a butyrate specific mechanistic approach to identify and treat increased metabolic abnormalities in GWI veterans with systemic inflammation, chronic fatigue, GI disturbances, metabolic complications and weight gain.


Assuntos
Butiratos/uso terapêutico , Modelos Animais de Doenças , Gastrite/metabolismo , Microbioma Gastrointestinal/fisiologia , Hepatócitos/metabolismo , Síndrome do Golfo Pérsico/metabolismo , Animais , Butiratos/farmacologia , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Gastrite/induzido quimicamente , Gastrite/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Inseticidas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Permetrina/toxicidade , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/prevenção & controle
3.
Redox Biol ; 17: 1-15, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660503

RESUMO

High circulatory insulin and leptin followed by underlying inflammation are often ascribed to the ectopic manifestations in non-alcoholic fatty liver disease (NAFLD) but the exact molecular pathways remain unclear. We have shown previously that CYP2E1-mediated oxidative stress and circulating leptin in NAFLD is associated with renal disease severity. Extending the studies, we hypothesized that high circulatory leptin in NAFLD causes renal mesangial cell activation and tubular inflammation via a NOX2 dependent pathway that upregulates proinflammatory miR21. High-fat diet (60% kcal) was used to induce fatty liver phenotype with parallel insulin and leptin resistance. The kidneys were probed for mesangial cell activation and tubular inflammation that showed accelerated NASH phenotype and oxidative stress in the liver. Results showed that NAFLD kidneys had significant increases in α-SMA, a marker of mesangial cell activation, miR21 levels, tyrosine nitration and renal inflammation while they were significantly decreased in leptin and p47 phox knockout mice. Micro RNA21 knockout mice showed decreased tubular immunotoxicity and proinflammatory mediator release. Mechanistically, use of NOX2 siRNA or apocynin,phenyl boronic acid (FBA), DMPO or miR21 antagomir inhibited leptin primed-miR21-mediated mesangial cell activation in vitro suggesting a direct role of leptin-mediated NOX-2 in miR21-mediated mesangial cell activation. Finally, JAK-STAT inhibitor completely abrogated the mesangial cell activation in leptin-primed cells suggesting that leptin signaling in the mesangial cells depended on the JAK-STAT pathway. Taken together the study reports a novel mechanistic pathway of leptin-mediated renal inflammation that is dependent on NOX-2-miR21 axis in ectopic manifestations underlying NAFLD-induced co-morbidities.


Assuntos
Inflamação/genética , MicroRNAs/genética , NADPH Oxidase 2/genética , Hepatopatia Gordurosa não Alcoólica/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , DNA Helicases/genética , Dieta Hiperlipídica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Janus Quinases/genética , Rim/metabolismo , Rim/patologia , Leptina/genética , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/genética , Ácido Peroxinitroso/metabolismo , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética
4.
Redox Biol ; 13: 8-19, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28551086

RESUMO

Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD)-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD) yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1) as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NAFLD mice showed liver damage and release of elevated HMGB1 in systemic circulation and increased intestinal tyrosine nitration that was dependent on NADPH oxidase. Intestines from NAFLD mice showed higher Toll like receptor 4 (TLR4) activation and proinflammatory cytokine release, an outcome strongly dependent on the existence of NAFLD pathology and NADPH oxidase. Mechanistically intestinal epithelial cells showed the HMGB1 activation of TLR-4 was both NADPH oxidase and peroxynitrite dependent with the latter being formed by the activation of NADPH oxidase. Proinflammatory cytokine production was significantly blocked by the specific peroxynitrite scavenger phenyl boronic acid (FBA), AKT inhibition and NADPH oxidase inhibitor Apocynin suggesting NADPH oxidase-dependent peroxynitrite is a key mediator in TLR-4 activation and cytokine release via an AKT dependent pathway. Studies to ascertain the mechanism of HMGB1-mediated NADPH oxidase activation showed a distinct role of Receptor for advanced glycation end products (RAGE) as the use of inhibitors targeted against RAGE or use of deformed HMGB1 protein prevented NADPH oxidase activation, peroxynitrite formation, TLR4 activation and finally cytokine release. Thus, in conclusion the present study identifies a novel role of HMGB1 mediated inflammatory pathway that is RAGE and redox signaling dependent and helps promote ectopic intestinal inflammation in NAFLD.


Assuntos
Proteína HMGB1/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Peroxinitroso/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Citocinas/metabolismo , Enterócitos/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Ratos , Receptor 4 Toll-Like/metabolismo
5.
PLoS One ; 12(3): e0172914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328972

RESUMO

Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1ß and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.


Assuntos
Lobo Frontal/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Enteropatias/metabolismo , Enteropatias/microbiologia , Síndrome do Golfo Pérsico/microbiologia , Receptor 4 Toll-Like/metabolismo , Animais , Claudina-2/metabolismo , Modelos Animais de Doenças , Disbiose/metabolismo , Endotoxemia/metabolismo , Guerra do Golfo , Inflamação/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Golfo Pérsico/metabolismo
6.
Free Radic Biol Med ; 102: 260-273, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913210

RESUMO

NAFLD is a clinically progressive disease with steatosis, inflammation, endothelial dysfunction and fibrosis being the stages where clinical intervention becomes necessary. Lack of early biomarkers and absence of a FDA approved drug obstructs efforts for effective treatment. NAFLD progression is strongly linked to a balance between liver injury, tissue regeneration and the functioning of endogenous defense mechanisms. The failure of the defense pathways to resist the tissue damage arising from redox stress, one of the "multiple hits" in disease progression, give rise to heightened inflammation and occasional fibrosis. We introduce an endogenous defense mechanism in the liver that is mediated by TRPV4, a transient receptor potential calcium-permeable ion channel that responds to the cytotoxic liver environment and negatively regulates CYP2E1, a cytochrome p450 enzyme. Using Trpv4-/- mice and cultured primary cells, we show that TRPV4 is activated both by damage associated molecular pattern HMGB1 and collagen in diseased Kupffer cells that in turn activate the endothelial NOS (NOS3) to release nitric oxide (NO). The diffusible NO acts in a paracrine fashion in neighboring hepatocytes to deactivate the redox toxicity induced by CYP2E1. We also find that CYP2E1-mediated TRPV4 repression in late stages causes an unrestricted progression of disease. Thus, TRPV4 functions as a sensor of cell stress in the diseased fatty liver and constitutes an endogenous defense molecule, a novel concept with potential for therapeutic approaches against NAFLD, perhaps also against hepatic drug toxicity in general.


Assuntos
Citocromo P-450 CYP2E1/genética , Óxido Nítrico Sintase Tipo III/genética , Hepatopatia Gordurosa não Alcoólica/genética , Canais de Cátion TRPV/genética , Animais , Citocromo P-450 CYP2E1/metabolismo , Modelos Animais de Doenças , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica , Proteína HMGB1/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Estresse Oxidativo/genética , Canais de Cátion TRPV/metabolismo , Ativação Transcricional/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 310(7): G510-25, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718771

RESUMO

Although significant research data exist on the pathophysiology of nonalcoholic steatohepatitis (NASH), finding an efficient treatment regimen for it remains elusive. The present study used sparstolonin B (SsnB), a novel TLR4 antagonist derived from the Chinese herb Sparganium stoloniferum, as a possible drug to mitigate early inflammation in NASH. This study used an early steatohepatitic injury model in high-fat-fed mice with CYP2E1-mediated oxidative stress as a second hit. SsnB was administered for 1 wk along with bromodichloromethane (BDCM), an inducer of CYP2E1-mediated oxidative stress. Results showed that SsnB administration attenuated inflammatory morphology and decreased elevation of the liver enzyme alanine aminotransferase (ALT). Mice administered SsnB also showed decreased mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-1ß, and IL-23, while protein levels of both TNF-α and IL-1ß were significantly decreased. SsnB significantly decreased Kupffer cell activation as evidenced by reduction in CD68 and monocyte chemoattractant protein-1 (MCP1) mRNA and protein levels with concomitant inhibition of macrophage infiltration in the injured liver. Mechanistically, SsnB decreased TLR4 trafficking to the lipid rafts, a phenomenon described by the colocalization of TLR4 and lipid raft marker flotillin in tissues and immortalized Kupffer cells. Since we have shown previously that NADPH oxidase drives TLR4 trafficking in NASH, we studied the role of SsnB in modulating this pathway. SsnB prevented NADPH oxidase activation in vivo and in vitro as indicated by decreased peroxynitrite formation. In summary, the present study reports a novel use of the TLR4 antagonist SsnB in mitigating inflammation in NASH and in parallel shows a unique molecular mechanism of decreasing nitrative stress.


Assuntos
Anti-Inflamatórios/farmacologia , Hepatite/prevenção & controle , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fígado/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Linhagem Celular , Citocromo P-450 CYP2E1/biossíntese , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Indução Enzimática , Hepatite/enzimologia , Hepatite/genética , Hepatite/patologia , Mediadores da Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/enzimologia , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Ácido Peroxinitroso/metabolismo , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Biochim Biophys Acta ; 1862(1): 32-45, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26474534

RESUMO

Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Células Estreladas do Fígado/metabolismo , Leptina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Linhagem Celular , Citocromo P-450 CYP2E1/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos
9.
Am J Physiol Renal Physiol ; 310(1): F85-F101, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26447219

RESUMO

Obesity and nonalcoholic fatty liver disease (NAFLD) are associated with the development and progression of chronic kidney disease. We recently showed that NAFLD induces liver-specific cytochrome P-450 (CYP)2E1-mediated metabolic oxidative stress after administration of the CYP2E1 substrate bromodichloromethane (BDCM) (Seth RK, Das S, Kumar A, Chanda A, Kadiiska MB, Michelotti G, Manautou J, Diehl AM, Chatterjee S. Toxicol Appl Pharmacol 274: 42-54, 2014; Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Toxicol Sci 134:291-303, 2013). The present study examined the effects of CYP2E1-mediated oxidative stress in NAFLD leading to kidney toxicity. Mice were fed a high-fat diet for 12 wk to induce NAFLD. NAFLD mice were exposed to BDCM, a CYP2E1 substrate, for 4 wk. NAFLD + BDCM increased CYP2E1-mediated lipid peroxidation in proximal tubular cells compared with mice with NAFLD alone or BDCM-treated lean mice, thus ruling out the exclusive role of BDCM. Lipid peroxidation increased IL-1ß, TNF-α, and interferon-γ. In parallel, mesangial cell activation was observed by increased α-smooth muscle actin and transforming growth factor-ß, which was blocked by the CYP2E1 inhibitor diallyl sulphide both in vivo and in vitro. Mice lacking natural killer T cells (CD1d knockout mice) showed elevated (>4-fold) proinflammatory mediator release, increased Toll-like receptor (TLR)4 and PDGF2 mRNA, and mesangial cell activation in the kidney. Finally, NAFLD CD1D knockout mice treated with BDCM exhibited increased high mobility group box 1 and Fas ligand levels and TUNEL-positive nuclei, indicating that higher cell death was attenuated in TLR4 knockout mice. Tubular cells showed increased cell death and cytokine release when incubated with activated mesangial cells. In summary, an underlying condition of progressive NAFLD causes renal immunotoxicity and aberrant glomerular function possibly through high mobility group box 1-dependent TLR4 signaling and mesangial cell activation, which, in turn, is modulated by intrinsic CD1D-dependent natural killer T cells.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Fígado/enzimologia , Células Mesangiais/metabolismo , Células T Matadoras Naturais/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Estresse Oxidativo , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Microambiente Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Nefropatias/imunologia , Nefropatias/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/patologia , Peroxidação de Lipídeos , Fígado/imunologia , Masculino , Células Mesangiais/imunologia , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Fator de Crescimento Transformador beta/metabolismo , Trialometanos/metabolismo
10.
Am J Pathol ; 185(7): 1944-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25989356

RESUMO

The molecular events that link NADPH oxidase activation and the induction of Toll-like receptor (TLR)-4 recruitment into hepatic lipid rafts in nonalcoholic steatohepatitis (NASH) are unclear. We hypothesized that in liver, NADPH oxidase activation is key in TLR4 recruitment into lipid rafts, which in turn up-regulates NF-κB translocation to the nucleus and subsequent DNA binding, leading to NASH progression. Results from confocal microscopy showed that liver from murine and human NASH had NADPH oxidase activation, which led to the formation of highly reactive peroxynitrite, as shown by 3-nitrotyrosine formation in diseased liver. Expression and recruitment of TLR4 into the lipid rafts were significantly greater in rodent and human NASH. The described phenomenon was NADPH oxidase, p47phox, and peroxynitrite dependent, as liver from p47phox-deficient mice and from mice treated with a peroxynitrite decomposition catalyst [iron(III) tetrakis(p-sulfonatophenyl)porphyrin] or a peroxynitrite scavenger (phenylboronic acid) had markedly less Tlr4 recruitment into lipid rafts. Mechanistically, peroxynitrite-induced TLR4 recruitment was linked to increased IL-1ß, sinusoidal injury, and Kupffer cell activation while blocking peroxynitrite-attenuated NASH symptoms. The results strongly suggest that NADPH oxidase-mediated peroxynitrite drove TLR4 recruitment into hepatic lipid rafts and inflammation, whereas the in vivo use of the peroxynitrite scavenger phenylboronic acid, a novel synthetic molecule having high reactivity with peroxynitrite, attenuates inflammatory pathogenesis in NASH.


Assuntos
Microdomínios da Membrana/patologia , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Peroxinitroso/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ácidos Borônicos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Receptor 4 Toll-Like/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G298-312, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25501551

RESUMO

Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) is the common pathophysiological process resulting from chronic liver inflammation and oxidative stress. Although significant research has been carried out on the role of leptin-induced NADPH oxidase in fibrogenesis, the molecular mechanisms that connect the leptin-NADPH oxidase axis in upregulation of transforming growth factor (TGF)-ß signaling have been unclear. We aimed to investigate the role of leptin-mediated upregulation of NADPH oxidase and its subsequent induction of micro-RNA 21 (miR21) in fibrogenesis. Human NASH livers and a high-fat (60% kcal) diet-fed chronic mouse model, where hepatotoxin bromodichloromethane was used to induce NASH, were used for this study. To prove the role of the leptin-NADPH oxidase-miR21 axis, mice deficient in genes for leptin, p47phox, and miR21 were used. Results showed that wild-type mice and human livers with NASH had increased oxidative stress, increased p47phox expression, augmented NF-κB activation, and increased miR21 levels. These mice and human livers showed increased TGF-ß, SMAD2/3-SMAD4 colocalizations in the nucleus, increased immunoreactivity against Col1α, and α-SMA with a concomitant decrease in protein levels of SMAD7. Mice that were deficient in leptin or p47phox had decreased activated NF-κB and miR21 levels, suggesting the role of leptin and NADPH oxidase in inducing NF-κB-mediated miR21 expression. Further miR21 knockout mice had decreased colocalization events of SMAD2/3-SMAD4 in the nucleus, increased SMAD7 levels, and decreased fibrogenesis. Taken together, the studies show the novel role of leptin-NADPH oxidase induction of miR21 as a key regulator of TGF-ß signaling and fibrogenesis in experimental and human NASH.


Assuntos
Leptina/metabolismo , Fígado/enzimologia , MicroRNAs/metabolismo , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Interferência de RNA , Proteína Smad7/metabolismo , Animais , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Leptina/deficiência , Leptina/genética , Fígado/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo , Ácido Peroxinitroso/metabolismo , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Proteína Smad4/metabolismo , Proteína Smad7/deficiência , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo , Trialometanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA