Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 46(10): 2085-2096, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35971860

RESUMO

BACKGROUND: The stimulation and recording performance of implanted neural interfaces are functions of the physical and electrical characteristics of the neural interface, its electrode material and structure. Therefore, rapid optimization of such characteristics is becoming critical in most clinical and research studies. This paper describes the development of an upgraded 3D printed cuff electrode shell design containing a novel intrinsically conductive polymer (ICP) for stimulation and recording of peripheral nerve fibers. METHODS: A 3D stereolithography (SLA) printer was used to print a scalable, custom designed, C-cuff electrode and I-beam closure for accurate, rapid implementation. A novel contact consisting of a percolated carbon graphite base electrodeposited with an intrinsically conductive polymer (ICP), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) produced a PEDOT:PSS + carbon black (CB) matrix that was used to form the electrochemical interface on the structure. Prototype device performance was tested both in-vitro and in-vivo for electrical chemical capacity, electrochemical interfacial impedance, surgical handling, and implantability. The in-vivo work was performed on the sciatic nerve of 25 anesthetized Sprague Dawley rats to demonstrate recording and stimulating ability. RESULTS: Prototypes of different spatial geometries and number of contacts (bipolar, tripolar, and tetrapolar) were designed. The design was successfully printed with inner diameters down to 500 µm. Standard bipolar and tripolar cuffs, with a 1.3 mm inner diameter (ID), 0.5 mm contact width, 1.0 mm pitch, and a 1.5 mm end distance were used for the functional tests. This geometry was appropriate for placement on the rat sciatic nerve and enabled in-vivo testing in anesthetized rats. The contacts on the standard bipolar electrode had an area of 2.1 × 10-2  cm2 . Cyclic voltammetry on ICP coated and uncoated graphite contacts showed that the ICP increased the average charge storage capacity (CSC) by a factor of 30. The corresponding impedance at 1 Hz was slightly above 1 kΩ, a 99.99% decrease from 100 kΩ in the uncoated state. The statistical comparison of the pre- versus post-stimulation impedance measurements were not significantly different (p-value > 0.05). CONCLUSIONS: The new cuff electrode enables rapid development of cost-effective functional stimulation devices targeting nerve bundles less than 1.0 mm in diameter. This allows for recording and modulation of a low-frequency current targeted within the peripheral nervous system.


Assuntos
Carbono , Grafite , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletrodos , Eletrodos Implantados , Polímeros/química , Ratos , Ratos Sprague-Dawley , Fuligem , Estereolitografia
2.
Artif Organs ; 46(10): 2055-2065, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35730955

RESUMO

BACKGROUND: The sinusoidal low-frequency alternating current (LFAC) waveform was explored recently as a novel means to evoke nerve conduction block. In the present work, we explored whether increasing the amplitude of the LFAC waveform results in nerve fiber activation in autonomic nerves. In-silico methods and preliminary work in somatic nerves indicated a potential frequency dependency on the threshold of activation. The Hering-Breuer (HB) reflex was used as a biomarker to detect cervical vagus nerve activation. METHODS: Experiments were conducted in isoflurane-anesthetized swine (n = 5). Two stimulating bipolar cuff electrodes and a tripolar recording cuff electrode were implanted on the left vagus nerve. To ensure the electrical stimulation affects only the afferent pathways, the nerve was crushed caudal to the electrodes to eliminate cardiac effects. (1) Standard pulse stimulation (Vstim) using a monophasic train of pulses was applied through the caudal electrode to elicit HB reflex and to identify the activated nerve fiber type. (2) Continuous sinusoidal LFAC waveform with a frequency ranging from 5 through 20 Hz was applied to the rostral electrode without Vstim to explore the activation thresholds at each LFAC frequency. In both cases, the activation of nerve fibers was detected by a HB reflex-induced reduction in the breathing rate. RESULTS: LFAC was found to be capable of eliciting an HB response. The LFAC activation thresholds were found to be frequency-dependent. The HB threshold was 1.02 ± 0.3 mAp at 5 Hz, 0.66 ± 0.3 mAp at 10 Hz, and 0.44 ± 0.2 mAp at 20 Hz. In comparison, it was 0.7 ± 0.47 mA for a 100 µs pulse. The LFAC amplitude was within the linear limits of the electrode interface. Damage to the cuff electrodes or the nerve tissues was not observed. Analysis of Vstim-based compound nerve action potentials (CNAP) indicated that the decrease in breathing rate was found to be correlated with the activation of slower components of the CNAP suggesting that LFAC reached and elicited responses from these slower fibers associated with afferents projecting to the HB response. CONCLUSIONS: These results suggest the feasibility of the LFAC waveform at 5, 10, and 20 Hz to activate autonomic nerve fibers and potentially provide a new modality to the neurorehabilitation field.


Assuntos
Isoflurano , Animais , Estimulação Elétrica , Frequência Cardíaca , Nervos Periféricos , Suínos , Nervo Vago/fisiologia
3.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282758

RESUMO

Electrical stimulation can be used to modulate activity within the nervous system in one of two modes: (1) Activation, where activity is added to the neural signalling pathways, or (2) Block, where activity in the nerve is reduced or eliminated. In principle, electrical nerve conduction block has many attractive properties compared to pharmaceutical or surgical interventions. These include reversibility, localization, and tunability for nerve caliber and type. However, methods to effect electrical nerve block are relatively new. Some methods can have associated drawbacks, such as the need for large currents, the production of irreversible chemical byproducts, and onset responses. These can lead to irreversible nerve damage or undesirable neural responses. In the present study we describe a novel low frequency alternating current blocking waveform (LFACb) and measure its efficacy to reversibly block the bradycardic effect elicited by vagal stimulation in anaesthetised rat model. The waveform is a sinusoidal, zero mean(charge balanced), current waveform presented at 1 Hz to bipolar electrodes. Standard pulse stimulation was delivered through Pt-Black coated PtIr bipolar hook electrodes to evoke bradycardia. The conditioning LFAC waveform was presented either through a set of CorTec® bipolar cuff electrodes with Amplicoat® coated Pt contacts, or a second set of Pt Black coated PtIr hook electrodes. The conditioning electrodes were placed caudal to the pulse stimulation hook electrodes. Block of bradycardic effect was assessed by quantifying changes in heart rate during the stimulation stages of LFAC alone, LFAC-and-vagal, and vagal alone. The LFAC achieved 86.2±11.1% and 84.3±4.6% block using hook (N = 7) and cuff (N = 5) electrodes, respectively, at current levels less than 110 µAp (current to peak). The potential across the LFAC delivering electrodes were continuously monitored to verify that the blocking effect was immediately reversed upon discontinuing the LFAC. Thus, LFACb produced a high degree of nerve block at current levels comparable to pulse stimulation amplitudes to activate nerves, resulting in a measurable functional change of a biomarker in the mammalian nervous system.


Assuntos
Bloqueio Nervoso , Condução Nervosa , Animais , Vias Autônomas , Estimulação Elétrica , Eletrodos , Ratos
4.
Bioelectron Med ; 7(1): 9, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187586

RESUMO

BACKGROUND: This paper describes a method to reversibly block nerve conduction through direct application of a 1 Hz sinusoidal current waveform delivered through a bipolar nerve cuff electrode. This low frequency alternating current (LFAC) waveform was previously shown to reversibly block the effects of vagal pulse stimulation evoked bradycardia in-vivo in the anaesthetised rat model (Mintch et al. 2019). The present work measured the effectiveness of LFAC block on larger caliber myelinated vagal afferent fibers in human sized nerve bundles projecting to changes in breathing rate mediated by the Hering-Breuer (HB) reflex in anaesthetized domestic swine (n=5). METHODS: Two bipolar cuff electrodes were implanted unilaterally to the left cervical vagus nerve, which was crushed caudal to the electrodes to eliminate cardiac effects. A tripolar recording cuff electrode was placed rostral to the bipolar stimulating electrodes on the same nerve to measure changes in the compound nerve action potentials (CNAP) elicited by the vagal pulse stimulation and conditioned by the LFAC waveform. Standard pulse stimulation was applied at a sufficient level to induce a reduction in breathing rate through the HB reflex. If unblocked, the HB reflex would cause breathing to slow down and potentially halt completely. Block was quantified by the ability of LFAC to reduce the effect of the HB reflex by monitoring the respiration rate during LFAC alone, LFAC and vagal stimulation, and vagal stimulation alone. RESULTS: LFAC achieved 87.2 ±8.8% block (n=5) at current levels of 1.1 ±0.3 mAp (current to peak), which was well within the water window of the working electrode. CNAP showed changes that directly correlated to the effectiveness of LFAC block, which manifested itself as the slowing and amplitude reduction of components of the CNAP. CONCLUSION: These novel findings suggest that LFAC is a potential alternative or complementary method to other electrical blocking techniques in clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA