Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(7): 797-812, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34030211

RESUMO

Fentanyl is a key therapeutic, used in anaesthesia and pain management. It is also increasingly used illicitly and is responsible for a large and growing number of opioid overdose deaths, especially in North America. A number of factors have been suggested to contribute to fentanyl's lethality, including rapid onset of action, in vivo potency, ligand bias, induction of muscle rigidity and reduced sensitivity to reversal by naloxone. Some of these factors can be considered to represent 'anomalous' pharmacological properties of fentanyl when compared with prototypical opioid agonists such as morphine. In this review, we examine the nature of fentanyl's 'anomalous' properties, to determine whether there is really a pharmacological basis to support the existence of such properties, and also discuss whether such properties are likely to contribute to overdose deaths involving fentanyls. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Overdose de Drogas , Fentanila , Humanos , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Antagonistas de Entorpecentes , Naloxona/farmacologia , Overdose de Drogas/tratamento farmacológico , Overdose de Drogas/epidemiologia
2.
Adv Drug Alcohol Res ; 22022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35909438

RESUMO

Overdose deaths from fentanyl have reached epidemic proportions in the USA and are increasing worldwide. Fentanyl is a potent opioid agonist that is less well reversed by naloxone than morphine. Due to fentanyl's high lipophilicity and elongated structure we hypothesised that its unusual pharmacology may be explained by its interactions with the lipid membrane on route to binding to the µ-opioid receptor (MOPr). Through coarse-grained molecular dynamics simulations, electrophysiological recordings and cell signalling assays, we determined how fentanyl and morphine access the orthosteric pocket of MOPr. Morphine accesses MOPr via the aqueous pathway; first binding to an extracellular vestibule, then diffusing into the orthosteric pocket. In contrast, fentanyl may take a novel route; first partitioning into the membrane, before accessing the orthosteric site by diffusing through a ligand-induced gap between the transmembrane helices. In electrophysiological recordings fentanyl-induced currents returned after washout, suggesting fentanyl deposits in the lipid membrane. However, mutation of residues forming the potential MOPr transmembrane access site did not alter fentanyl's pharmacological profile in vitro. A high local concentration of fentanyl in the lipid membrane, possibly in combination with a novel lipophilic binding route, may explain the high potency and lower susceptibility of fentanyl to reversal by naloxone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA