Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Peptides ; 175: 171111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38036098

RESUMO

Endogenous peptide inhibitor for CXCR4 (EPI-X4) is a CXCR4 antagonist with potential for cancer therapy. It is a processed fragment of serum albumin from the hemofiltrate of dialysis patients. This study reports the efficacy of fifteen EPI-X4 derivatives in pancreatic cancer and lymphoma models. In vitro, the peptides were investigated for antiproliferation (cytotoxicity) by MTT assay. The mRNA expression for CXCR4 and CXCL12 was determined by RT-PCR, chip array and RNA sequencing. Chip array analysis yielded 634 genes associated with CXCR4/CXCL12 signaling. About 21% of these genes correlated with metastasis in the context of cell motility, proliferation, and survival. Expression levels of these genes were altered in pancreatic cancer (36%), lymphoma models (53%) and in patients' data (58%). EPI-X4 derivatives failed to inhibit cell proliferation due to low expression of CXCR4 in vitro, but inhibited tumor growth in the bioassays with significant efficacy. In the pancreatic cancer model, EPI-X4a, f and k inhibited mean tumor growth by > 50% and even caused complete remissions. In the lymphoma model, EPI-X4b, n and p inhibited mean tumor growth by > 70% and caused stable disease. Given the non-toxic and non-immunogenic properties of EPI-X4, these findings underscore its status as a promising therapy of pancreatic cancer and lymphoma and warrant further studies. SIMPLE SUMMARY: This study examined the value of chemokine receptor CXCR4 as an antineoplastic target for the endogenous peptide inhibitor of CXCR4 (EPI-X4), a 12-meric peptide derived from serum albumin. EPI-X4 inhibits CXCR4 interaction with its natural ligand, CXCL12 (SDF1). Therefore, malignancies (including pancreatic cancer and lymphoma) that depend on the CXCR4/CXCL12 pathway for progression can be targeted with EPI-X4. Of 634 genes that were linked to the CXCR4/CXCL12 pathway, 21% were associated with metastasis. In cultured human Suit2-007 pancreatic cancer cells, CXCR4 showed low to undetectable expression, which was why EPI-X4 did not inhibit pancreatic cancer cell proliferation. These findings were different in vivo, where CXCR4 was highly expressed and EPI-X4 inhibited tumor growth in rodents harboring pancreatic cancer or lymphoma. In the pancreatic cancer model, EPI-X4 derivatives a, f and k caused complete remissions, while in lymphomas EPI-X4 derivatives b, n and p caused stable disease.


Assuntos
Linfoma , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Linfoma/tratamento farmacológico , Linfoma/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Peptídeos/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Transdução de Sinais
2.
Life Sci ; 296: 120431, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218766

RESUMO

AIMS: Ovarian torsion is the fifth common gynecological emergency that can affect females of all ages particularly during reproductive age and its management by detorsion leads to ovarian ischemia reperfusion (IR) injury. Therefore, prophylactic measures are required to protect the ovarian function after detorsion. So that, our study aimed to assess the effect and underlying mechanisms of heme oxygenase-1 (HO-1) inducer; hemin against ovarian damage induced by IR injury in rats. MAIN METHODS: Female rats were divided into: sham group, hemin group, ovarian IR (OIR) groups with and without hemin treatment. Serum levels of reduced glutathione (GSH) and interleukin 1 ß (IL-1ß) were measured in addition to ovarian levels of malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD). Ovarian phospho-Janus kinase (p-JNK) levels and gene expressions of HO-1 and inducible nitric oxide synthase (iNOS) were determined. Moreover, histopathological changes and expressions of phospho-nuclear factor kappa B p65 (p-NF-κB p65) and cleaved caspase-3 were done. KEY FINDINGS: Treatment of OIR rats with hemin led to significant attenuation of ovarian damage through histological examination which was associated with significant increase in ovarian expression of HO-1, ovarian SOD and serum GSH levels with significant decrease in ovarian p-JNK levels, expressions of p-NF-κB p65, iNOS and cleaved caspase-3 in addition to serum IL-1ß levels. SIGNIFICANCE: The protective effect of hemin can be attributed to the increased expression of HO-1 which showed antioxidant, anti-inflammatory and anti-apoptotic effects. Therefore, hemin can be administered to prevent ovarian IR injury which occurs after detorsion.


Assuntos
Hemina/farmacologia , Ovário/efeitos dos fármacos , Ovário/patologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Caspase 3/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Interleucina-1beta/sangue , MAP Quinase Quinase 4/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ovário/irrigação sanguínea , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
3.
Cell Stress Chaperones ; 27(1): 55-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34881408

RESUMO

Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)-induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase-3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress-induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.


Assuntos
Sulfeto de Hidrogênio , Lesão Pulmonar , Animais , Antioxidantes/farmacologia , Sulfeto de Hidrogênio/farmacologia , Interleucina-10/metabolismo , Lesão Pulmonar/prevenção & controle , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/farmacologia , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
4.
Front Pharmacol ; 11: 547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410999

RESUMO

Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.

5.
Front Pharmacol ; 11: 180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194414

RESUMO

Targeting of endothelin system genes is a promising strategy in cancer therapy. The modulation of these genes was explored in a model of colorectal cancer (CRC) liver metastasis and in a panel of CRC tumor cell lines that were exposed to the demethylating agent decitabine. The CC531 rat model mimicking CRC liver metastasis was used for tumor cell re-isolation and analysis of the endothelin system genes and DNA methyltransferases (DNMTs) by microarray. To mimic the effects caused by methylation changes, a panel of seven CRC cell lines was treated with the demethylating agent decitabine. Three genes of the endothelin system were potently modulated at messenger RNA (mRNA) level in rat CC531 cells during liver colonization. The concomitant decrease of two DNMTs suggested an influence from altered methylation. Changes in gene expression were also accomplished by exposure of CRC cells to the demethylating agent decitabine, when using daily low concentrations for 3 days, with minimal cytotoxic effects. Sensitive human SW480 cells showed an almost 100fold upregulation of endothelin-1 mRNA compared to untreated cells. This, however, was different in LS174T cells, which showed no significant increase in gene expression although the methylation levels were significantly decreased at a variety of corresponding loci. We suggest that the mechanism induced by methylation on gene expression in metastatic CRC cells can be compromised. The results question the overall success of treating metastatic CRC by methylation inhibitors.

6.
Life Sci ; 235: 116840, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494171

RESUMO

AIMS: Ovarian ischemia as a consequence of torsion constitutes a gynecologic emergency affecting females during reproductive age. Its management by detorsion results in ovarian ischemia-reperfusion (IR) injury. Thus, a conservative treatment with detorsion is highly recommended. Therefore, we attempted to investigate the effect and underlying mechanisms of angiotensin 1-7 (Ang-(1-7)) treatment against ovarian IR injury. MAIN METHODS: Female rats were included into: Sham group; Ang-(1-7) (300 µg/kg, i.p.) group; ovarian IR groups with and without Ang-(1-7) treatment. We determined ovarian Ang-(1-7), malondialdehyde (MDA) and nitric oxide (NO) in addition to serum total anti-oxidant capacity (TAC) levels. Ovarian gene expressions of angiotensin converting enzyme 2 (ACE2), Mas receptor, tumor necrosis factor alpha (TNF-α) and B-cell leukemia/lymphoma-2 (BCL-2) were estimated. Furthermore, histopathological changes and ovarian expressions of nuclear factor kappa B (NF-κB), inducible and endothelial nitric oxide synthases (iNOS and eNOS) were done. KEY FINDINGS: Treatment of ovarian IR rats with Ang-(1-7) led to marked improvement of ovarian damage through histological examination which was accompanied with marked increase in ovarian Ang-(1-7) level and expressions of ACE2 and Mas receptor, decrease in MDA and NO levels and expressions of NF-kB, iNOS and TNF-α with increase in serum TAC levels and ovarian expressions of eNOS and BCL-2. SIGNIFICANCE: Our results proved the protective effect of Ang-(1-7) against ovarian IR injury in rats and this may be attributed to ACE2/Ang (1-7)/Mas axis which showed anti-oxidant, anti-inflammatory and anti-apoptotic effects. Therefore, Ang-(1-7) can be used in the future for treatment of ovarian IR injury.


Assuntos
Angiotensina I/farmacologia , Ovário/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Enzima de Conversão de Angiotensina 2 , Animais , Antioxidantes/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Malondialdeído/metabolismo , NF-kappa B/biossíntese , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Ovário/lesões , Ovário/metabolismo , Peptidil Dipeptidase A/biossíntese , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Soro/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
7.
Cell Death Discov ; 5: 128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428460

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) shows a high level of basal autophagy. Here we investigated the role of optineurin (OPTN) in PDAC cell lines, which is a prominent member of the autophagy system. To that purpose, mining of publically available databases showed that OPTN is highly expressed in PDAC and that high levels of expression are related to reduced survival. Therefore, the role of OPTN on proliferation, migration, and colony formation was investigated by transient knockdown in Miapaca, BXPC3, and Suit2-007 human PDAC cells. Furthermore, gene expression modulation in response to OPTN knockdown was assessed by microarray. The influence on cell cycle distribution and cell death signaling cascades was followed by FACS, assays for apoptosis, RT-PCR, and western blot. Finally, autophagy and ROS induction were screened by acridine orange and DCFH-DA fluorescent staining respectively. OPTN knockdown caused significant inhibition of colony formation, increased migration and no significant effect on proliferation in Miapaca, BXPC3 and Suit2-007 cells. The microarray showed modulation of 293 genes in Miapaca versus 302 in Suit2-007 cells, of which 52 genes overlapped. Activated common pathways included the ER stress response and chaperone-mediated autophagy, which was confirmed at mRNA and protein levels. Apoptosis was activated as shown by increased levels of cleaved PARP, Annexin V binding and nuclear fragmentation. OPTN knockdown caused no increased vacuole formation as assessed by acridine orange. Also, there was only marginally increased ROS production. Combination of OPTN knockdown with the autophagy inducer erufosine or LY294002, an inhibitor of autophagy, showed additive effects, which led us to hypothesize that they address different pathways. In conclusion, OPTN knockdown was related to activation of ER stress response and chaperone-mediated autophagy, which tend to confine the damage caused by OPTN knockdown and thus question its value for PDAC therapy.

8.
Cell Death Dis ; 9(3): 296, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463797

RESUMO

Endoplasmic reticulum (ER) plays an essential role in cell function and survival. Accumulation of unfolded or misfolded proteins in the lumen of the ER activates the unfolded protein response (UPR), resulting in ER stress and subsequent apoptosis. The alkylphosphocholine erufosine is a known Akt-mTOR inhibitor in oral squamous cell carcinoma (OSCC). In the present study, we evaluate erufosine's role to induce ER and mitochondrial stress leading to autophagy, apoptosis, and ROS induction. The cellular toxicity of erufosine was determined in two OSCC cell lines and gene expression and enrichment analyses were performed. A positive enrichment of ER stress upon erufosine exposure was observed, which was verified at protein levels for the ER stress sensors and their downstream mediators. Knockdown and pharmacological inhibition of the ER stress sensors PERK and XBP1 revealed their involvement into erufosine's cellular effects, including proliferation, apoptosis, and autophagy induction. Autophagy was confirmed by increased acidic vacuoles and LC3-B levels. Upon erufosine exposure, calcium influx into the cytoplasm of the two OSCC cell lines was seen. Apoptosis was confirmed by nuclear staining, Annexin-V, and immunoblotting of caspases. The induction of mitochondrial stress upon erufosine exposure was predicted by gene set enrichment analysis (GSEA) and shown by erufosine's effect on mitochondrial membrane potential, ATP, and ROS production in OSCC cells. These data show that ER and mitochondrial targeting by erufosine represents a new facet of its mechanism of action as well as a promising new framework in the treatment of head and neck cancers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/fisiopatologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/fisiopatologia , Organofosfatos/farmacologia , Fosforilcolina/farmacologia , Compostos de Amônio Quaternário/farmacologia , Anexina A5/genética , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA