Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
J Oral Rehabil ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661347

RESUMO

BACKGROUND: Cervical posture affects swallowing function through contractile and non-contractile structures. Craniocervical flexor endurance training (CCFET), which focuses on the activation of deep cervical muscles, is used to ensure cervical posture stability. OBJECTIVE: The aim of this study was to investigate the effect of CCFET on the suprahyoid muscles (SH), which play an important role in swallowing function. METHODS: Eighty healthy individuals (52 female and 28 male, mean age 21.77 ± 1.81 years) were recruited and randomly assigned to groups that underwent either deep cervical flexor (DCF) training with a pressure biofeedback unit (CCFET group, n = 41) or no intervention (control group, n = 39). The intervention was applied for 4 weeks (five sessions per week). Static endurance and activation of DCF muscles (Craniocervical Flexion Test, CCFT), tragus-wall distance (TWD) for forward head posture and surface electromyographic (sEMG) activation of suprahyoid muscles were evaluated. RESULTS: The endurance and activation of the DCF muscles were significantly increased in the CCFET group (p = <.001). In the CCFET group, TWD significantly lower than the control group (p = <.001) Peak SH amplitude and mean SH amplitude were lower in the CCFET group compared to the control group (p = .013, p = .003). CONCLUSION: The study shows that 4 weeks of CCFET reduced SH muscle activation, allowing the same work to be done with fewer motor units. CCFET can be included in rehabilitation programs as an additional method that has an effect on the muscles involved in swallowing by providing cervical motor control.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38635803

RESUMO

Pancreatic cancer is a fatal illness caused by mutations in multiple genes. Pancreatic cancer damages the organ that helps in digestion, resulting in symptoms including fatigue, bloating, and nausea. The use of medicinal plants has been crucial in the treatment of numerous disorders. The medicinal plant Calliandra Harrisi has been widely exploited for its possibilities in biology and medicine. The current study aimed to assess the biopotential of biologically active substances against pancreatic cancer. The GC-MS data of these phytochemicals from Calliandra Harrisi were further subjected to computational approaches with pancreatic cancer genes to evaluate their potential as therapeutic candidates. Molecular docking analysis revealed that N-[Carboxymethyl] maleamic acid is the leading molecule responsible for protein denaturation inhibition, having the highest binding affinity of 6.8 kJ/mol among all other compounds with KRAS inflammatory proteins. Furthermore, ADMET analysis and Lipinski's rule validation were also performed revealing its higher absorption in the gastrointestinal tract. The results of the hepatotoxicity test demonstrated that phytochemicals are non-toxic, safe to use, and do not cause necrosis, fibrosis, or vacuolar degeneration even at excessive levels. Calliandra Harrisi has phytoconstituents that have a variety of pharmacological uses in consideration.

3.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675998

RESUMO

IoT-based smart transportation monitors vehicles, cargo, and driver statuses for safe movement. Due to the limited computational capabilities of the sensors, the IoT devices require powerful remote servers to execute their tasks, and this phenomenon is called task offloading. Researchers have developed efficient task offloading and scheduling mechanisms for IoT devices to reduce energy consumption and response time. However, most research has not considered fault-tolerance-based job allocation for IoT logistics trucks, task and data-aware scheduling, priority-based task offloading, or multiple-parameter-based fog node selection. To overcome the limitations, we proposed a Multi-Objective Task-Aware Offloading and Scheduling Framework for IoT Logistics (MT-OSF). The proposed model prioritizes the tasks into delay-sensitive and computation-intensive tasks using a priority-based offloader and forwards the two lists to the Task-Aware Scheduler (TAS) for further processing on fog and cloud nodes. The Task-Aware Scheduler (TAS) uses a multi-criterion decision-making process, i.e., the analytical hierarchy process (AHP), to calculate the fog nodes' priority for task allocation and scheduling. The AHP decides the fog nodes' priority based on node energy, bandwidth, RAM, and MIPS power. Similarly, the TAS also calculates the shortest distance between the IoT-enabled vehicle and the fog node to which the IoT tasks are assigned for execution. A task-aware scheduler schedules delay-sensitive tasks on nearby fog nodes while allocating computation-intensive tasks to cloud data centers using the FCFS algorithm. Fault-tolerant manager is used to check task failure; if any task fails, the proposed system re-executes the tasks, and if any fog node fails, the proposed system allocates the tasks to another fog node to reduce the task failure ratio. The proposed model is simulated in iFogSim2 and demonstrates a 7% reduction in response time, 16% reduction in energy consumption, and 22% reduction in task failure ratio in comparison to Ant Colony Optimization and Round Robin.

4.
Chemosphere ; 358: 142055, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641292

RESUMO

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.

5.
Environ Sci Pollut Res Int ; 31(19): 28775-28788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558338

RESUMO

With the extensive development of nuclear energy, soil uranium contamination has become an increasingly prominent problem. The development of evaluation systems for various uranium contamination levels and soil microhabitats is critical. In this study, the effects of uranium contamination on the carbon source metabolic capacity and microbial community structure of soil microbial communities were investigated using Biolog microplate technology and high-throughput sequencing, and the responses of soil biochemical properties to uranium were also analyzed. Then, ten key biological indicators as reliable input variables, including arylsulfatase, biomass nitrogen, metabolic entropy, microbial entropy, Simpson, Shannon, McIntosh, Nocardioides, Lysobacter, and Mycoleptodisus, were screened by random forest (RF), Boruta, and grey relational analysis (GRA). The optimal uranium-contaminated soil microbiological evaluation model was obtained by comparing the performance of three evaluation methods: partial least squares regression (PLS), support vector regression (SVR), and improved particle algorithm (IPSO-SVR). Consequently, partial least squares regression (PLS) has a higher R2 (0.932) and a lower RMSE value (0.214) compared to the other. This research provides a new evaluation method to describe the relationship between soil ecological effects and biological indicators under nuclear contamination.


Assuntos
Microbiologia do Solo , Solo , Urânio , Urânio/análise , Solo/química , Poluentes do Solo , Poluentes Radioativos do Solo/análise
6.
Int J Biol Macromol ; 266(Pt 2): 131312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582471

RESUMO

Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.


Assuntos
Alginatos , Estruturas Metalorgânicas , Esgotos , Poluentes Químicos da Água , Purificação da Água , Alginatos/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Purificação da Água/métodos , Biopolímeros/química , Esgotos/química , Cobre/química , Membranas Artificiais , Cápsulas/química , Nanopartículas/química , Cátions/química , Concentração de Íons de Hidrogênio , Cádmio/química , Cádmio/isolamento & purificação , Água/química
7.
Chemosphere ; 353: 141600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458355

RESUMO

As a cost-effective material, biochar, known as 'black gold', has been widely used for environmental applications (EA), including chromium-contaminated wastewater remediation. However, limited reports focused on the multiple impacts of biochar, including energy consumption (EC) and environmental risk (ER). Hence, to recommend biochar as a green material for sustainable development, the three critical units were explored and quantitatively assessed based on an adapted 3E model (EA-EC-ER). The tested biochar was produced by limited-oxygen pyrolysis at 400-700 °C by using three typical biomasses (Ulva prolifera, phoenix tree, and municipal sludge), and the optimal operational modulus of the 3E model was identified using six key indicators. The findings revealed a significant positive correlation between EC and biochar yield (p < 0.05). The biochar produced by phoenix tree consumed more energy due to having higher content of unstable carbon fractions. Further, high-temperature and low-temperature biochar demonstrated different chromium removal mechanisms. Notably, the biochar produced at low temperature (400 °C) achieved better EA due to having high removal capacity and stability. Regarding ER, pyrolysis temperature of 500 °C could effectively stabilize the ecological risk in all biochar and the biochar produced by Ulva prolifera depicted the greatest reduction (37-fold). However, the increase in pyrolysis temperature would lead to an increase in global warming potential by nearly 22 times. Finally, the 3E model disclosed that the biochar produced by Ulva prolifera at 500 °C with low EC, high EA, and low ER had the most positive recommendation index (+78%). Importantly, a rapid assessment methodology was established by extracting parameters from the correlation. Based on this methodology, about eight percent of biochar can be the highest recommended from more than 100 collected peer-related data. Overall, the obtained findings highlighted that the multiple impacts of biochar should be considered to efficiently advance global sustainable development goals.


Assuntos
Cromo , Algas Comestíveis , Ulva , Águas Residuárias , Carvão Vegetal
8.
Artigo em Inglês | MEDLINE | ID: mdl-38530580

RESUMO

Pheniramine is an over-the-counter antihistamine drug. Its accessibility and low cost made it more popular among drug abusers in Pakistan. In this study, pheniramine was quantified in both conventional and alternative specimens of twenty chronic drug abusers, aged 16-50 years, who were positive for pheniramine in comprehensive toxicological screening for drugs by gas chromatography with mass spectral detection in positive electron impact mode. Pheniramine was extracted from biological specimens using solid phase extraction and liquid chromatography tandem mass spectrometry was employed for quantification. Chromatographic separation was carried out on a Poroshell120EC-18 (2.1 mm × 50 mm × 2.7 µm) column using water-acetonitrile in formic acid (0.1%) mobile phase in gradient elution mode with 500 µL/min flow rate. Positive electrospray ionization mode and multi-reaction monitoring with ion transitions m/z 241.3 → 195.8 and 167.1 for pheniramine and m/z m/z 247.6 → 173.1 for pheniramine-d6 were employed. The quantification method showed good linear ranges of 2-1000 ng/mL in blood, urine, and oral fluid; 2-1000 ng/mg in hair and 5-1000 ng/mg in nail with ≥ 0.985% coefficient of linearity. The retention time of pheniramine was 3.0 ± 0.1 min. The detection and lower quantification limits were 1 ng/mL and 2 ng/mL for blood, urine, oral fluid and hair whereas 2.5 ng/mg and 5 ng/mg for nail, respectively. Mean extraction recovery and ionization suppression ranged 86.3-95.1% and -4.6 to -14.4% in the studied matrices. Intra-day and inter-day precision were 4.1-9.3% and 2.8-11.2%, respectively. Pheniramine levels in specimens of drug abusers were 23-480 ng/mL in blood, 72-735 ng/mL in urine, 25-379 ng/mL in oral fluid, 10-170 ng/mg in hair and 8-86 ng/mg in nail specimens. Alternative specimens are of utmost significance in clinical and medico-legal cases. In this study, authors compared matrix-matched calibration curves to blood calibration curve and obtained results within ± 10%; thereby justifying the use of blood calibration curve for urine, oral fluid, hair, and nail specimens.

9.
Chirality ; 36(3): e23659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445305

RESUMO

Due to a great demand for amylose and cellulose polymeric chromatographic chiral columns, the enantiomeric separation of thiourea derivatives of naringenin was achieved on the different amylose (Chiralpak-IB) and cellulose chiral (Chiralcel-OJ and Chiralcel-OD-3R) columns with varied chromatographic conditions. The isocratic mobile phases used were ethanol and methanol, where ethanol/hexane and methanol/hexane were used as gradient mode and were prepared in volume/volume relation. The separation and resolution factors for all the enantiomers were in the range of 1.25 to 3.47 and 0.48 to 1.75, respectively. The enantiomeric resolution was obtained within 12 min making fast separation. The docking studies confirmed the chiral recognition mechanisms with binding affinities in the range of -4.7 to -5.7 kcal/mol. The reported compounds have good anticoagulant activities and may be used as anticoagulants in the future. Besides, chiral separation is fast and is useful for enantiomeric separation in any laboratory in the world.


Assuntos
Amilose , Flavanonas , Hexanos , Metanol , Estereoisomerismo , Celulose , Polímeros , Etanol , Tioureia
11.
Free Radic Res ; 58(2): 98-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373238

RESUMO

INTRODUCTION: Prostate Cancer (PC) is a global health concern affecting men worldwide. Oxidative stress is believed to contribute to the initiation of early-stage PC lesions. Additionally, inflammation has long been acknowledged as a factor in the development of PC. We aimed to examine the biomarkers of oxidative stress and inflammation in PC patients before and after surgery. PATIENTS AND METHODS: A cross-sectional study was conducted at the Urology Outpatient Clinic of Bezmialem Vakif University Hospital. A total of 150 individuals were included in the study, divided into five groups: 50 Healthy controls, 25 patients with Benign Prostatic Hyperplasia (BPH), 25 patients with Low-Risk Prostate Cancer (LRPC), 25 patients with Medium-Risk Prostate Cancer (MRPC), and 25 patients with High-Risk Prostate Cancer (HRPC). Measurements of Total Oxidant Status (TOS), Total Antioxidant Status (TAS), Total Thiol (TT), and Native Thiol (NT) were performed using photometric methods. Oxidative Stress Index (OSI) and Disulfide (DIS) levels were calculated mathematically. Levels of Interleukin-10 (IL-10), Interleukin-1beta (IL-1ß), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-6 (IL-6), and Presepsin were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Compared to the healthy control group, the results indicated a statistically significant increase in both oxidative stress and inflammation levels. In the groups receiving both pharmaceutical therapy and surgical treatment (PC), a significant decrease in oxidative stress and inflammation levels was observed. CONCLUSION: Consequently, it is suggested that the assessment of oxidative stress and inflammatory biomarkers should be incorporated in the pre- and postoperative monitoring of patients with PC.


Total Antioxidant Status (TAS) levels are found to be statistically lower in all PC groups, indicating a correlation between oxidative stress and the progression of PC.Levels of inflammatory biomarkers (IL-1ß, IL-6, IL-10, TNF-α) were found to be higher before and after surgery in PC groups, and their variation correlated with tumor grade and size.Post-surgery, a decrease in presepsin levels is associated with a reduced likelihood of sepsis in PC patients.Reductions in oxidative stress and inflammation levels postoperatively suggest the effectiveness of surgical intervention in mitigating these factors.The potential for personalized medicine to decrease PC mortality is highlighted by better understanding the functional relationship coordinating inflammatory signatures in the tumor microenvironment.


Assuntos
Estresse Oxidativo , Neoplasias da Próstata , Masculino , Humanos , Estudos Transversais , Inflamação , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Neoplasias da Próstata/cirurgia , Interleucina-6 , Compostos de Sulfidrila
12.
Adv Colloid Interface Sci ; 324: 103096, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309035

RESUMO

Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to its low degradation in aquatic animals. Besides, it has many side effects on human vital organs. Therefore, the present article discusses the recent advances in the removal of norfloxacin by adsorption. This article describes the presence of norfloxacin in natural water, consumption, toxicity, various adsorbents for norfloxacin removal, optimization factors for norfloxacin removal, kinetics, thermodynamics, modeling, adsorption mechanism and regeneration of the adsorbents. Adsorption takes place in a monolayer following the Langmuir model. The Pseudo-second order model represents the kinetic data. The adsorption capacity ranged from 0.924 to 1282 mg g-1. In this sense, the parameters such as the NFX concentration added to the adsorbent textural properties exerted a great influence. Besides, the fixed bed-based removal at a large scale is also included. In addition to this, the simulation studies were also discussed to describe the adsorption mechanism. Finally, the research challenges and future perspectives have also been highlighted. This article will be highly useful for academicians, researchers, industry persons, and government authorities for designing future advanced experiments.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Animais , Humanos , Norfloxacino/análise , Água , Adsorção , Antibacterianos , Cinética , Concentração de Íons de Hidrogênio
14.
Healthcare (Basel) ; 12(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255136

RESUMO

Length of stay (LoS) prediction is deemed important for a medical institution's operational and logistical efficiency. Sound estimates of a patient's stay increase clinical preparedness and reduce aberrations. Various statistical methods and techniques are used to quantify and predict the LoS of a patient based on pre-operative clinical features. This study evaluates and compares the results of Bayesian (simple Bayesian regression and hierarchical Bayesian regression) models and machine learning (ML) regression models against multiple evaluation metrics for the problem of LoS prediction of cardiac patients admitted to Tabba Heart Institute, Karachi, Pakistan (THI) between 2015 and 2020. In addition, the study also presents the use of hierarchical Bayesian regression to account for data variability and skewness without homogenizing the data (by removing outliers). LoS estimates from the hierarchical Bayesian regression model resulted in a root mean squared error (RMSE) and mean absolute error (MAE) of 1.49 and 1.16, respectively. Simple Bayesian regression (without hierarchy) achieved an RMSE and MAE of 3.36 and 2.05, respectively. The average RMSE and MAE of ML models remained at 3.36 and 1.98, respectively.

15.
Sci Rep ; 14(1): 1529, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233440

RESUMO

There is no FDA-approved drug for neurological disorders like spinocerebellar ataxia type 3. CAG repeats mutation in the ATXN3 gene, causing spinocerebellar ataxia type 3 disease. Symptoms include sleep cycle disturbance, neurophysiological abnormalities, autonomic dysfunctions, and depression. This research focuses on drug discovery against ATXN3 using phytochemicals of different plants. Three phytochemical compounds (flavonoids, diterpenoids, and alkaloids) were used as potential drug candidates and screened against the ATXN3 protein. The 3D structure of ATXN3 protein and phytochemicals were retrieved and validation of the protein was 98.1% Rama favored. The protein binding sites were identified for the interaction by CASTp. ADMET was utilized for the pre-clinical analysis, including solubility, permeability, drug likeliness and toxicity, and chamanetin passed all the ADMET properties to become a lead drug candidate. Boiled egg analysis attested that the ligand could cross the gastrointestinal tract. Pharmacophore analysis showed that chamanetin has many hydrogen acceptors and donors which can form interaction bonds with the receptor proteins. Chamanetin passed all the screening analyses, having good absorption, no violation of Lipinski's rule, nontoxic properties, and good pharmacophore properties. Chamanetin was one of the lead compounds with a - 7.2 kcal/mol binding affinity after screening the phytochemicals. The stimulation of ATXN3 showed stability after 20 ns of interaction in an overall 50 ns MD simulation. Chamanetin (Flavonoid) was predicted to be highly active against ATXN3 with good drug-like properties. In-silico active drug against ATXN3 from a plant source and good pharmacokinetics parameters would be excellent drug therapy for SC3, such as flavonoids (Chamanetin).


Assuntos
Doença de Machado-Joseph , Humanos , Ataxina-3/genética , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Simulação de Acoplamento Molecular
16.
Electrophoresis ; 45(1-2): 55-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37495859

RESUMO

Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.


Assuntos
Eletroforese Capilar , Eletroforese Capilar/métodos , Cromatografia Líquida , Estereoisomerismo , Cromatografia Líquida de Alta Pressão , Preparações Farmacêuticas
17.
Eur J Med Chem ; 265: 116052, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134745

RESUMO

The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Histonas , Proteínas Nucleares , Quinoxalinas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contêm Bromodomínio
18.
J Environ Manage ; 351: 119879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157574

RESUMO

In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.


Assuntos
Eliminação de Resíduos , Mudança Climática , Perda e Desperdício de Alimentos , Hong Kong , Alimentos , Carbono , Eletricidade , China
19.
Int J Biol Macromol ; 258(Pt 1): 128824, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103665

RESUMO

Herpes simplex viruses (HSVs) have an affinity for heparan sulfate proteoglycans on cell surfaces, which is a determinant for virus entry. Herein, several sulfated galactans that mimic the active domain of the entry receptor were employed to prevent HSV infection. They were produced from Grateloupia indica using chlorosulfonic acid-pyridine (ClSO3H.Py)/N,N-dimethylformamide reagent (fraction G-402), SO3.Py/DMF reagent (G-403), or by aqueous extraction (G-401). These galactans contained varied molecular masses (33-55 kDa), and sulfate contents (12-20 %), and have different antiviral activities. Especially, the galactan (G-402) generated by using ClSO3H.Py/DMF, a novel reagent, exhibited the highest level of antiviral activity (EC50 = 0.36 µg/mL) compared to G-403 (EC50 = 15.6 µg/mL) and G-401 (EC50 = 17.9 µg/mL). This most active sulfated galactan possessed a linear chain containing ß-(1 â†’ 3)- and α-(1 â†’ 4)-linked Galp units with sulfate group at the O-2/4/6 and O-2/3/6 positions, respectively. The HSV-1 and HSV-2 strains were specifically inhibited by this novel 33 ± 15 kDa galactan, which also blocked the virus from entering the host cell. These results highlight the significant potential of this sulfated galactan for antiviral research and drug development. Additionally, the reagent used for the effective conversion of galactan hydroxy groups to sulfate during extraction may also be useful for the chemical transformation of other natural products.


Assuntos
Herpesvirus Humano 1 , Rodófitas , Galactanos/química , Rodófitas/química , Sulfatos/farmacologia , Antivirais/farmacologia
20.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068618

RESUMO

Plants, being sessile, have developed complex signaling and response mechanisms to cope with biotic and abiotic stressors. Recent investigations have revealed the significant contribution of phytohormones in enabling plants to endure unfavorable conditions. Among these phytohormones, jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates (JAs), are of particular importance and are involved in diverse signal transduction pathways to regulate various physiological and molecular processes in plants, thus protecting plants from the lethal impacts of abiotic and biotic stressors. Jasmonic acid has emerged as a central player in plant defense against biotic stress and in alleviating multiple abiotic stressors in plants, such as drought, salinity, vernalization, and heavy metal exposure. Furthermore, as a growth regulator, JA operates in conjunction with other phytohormones through a complex signaling cascade to balance plant growth and development against stresses. Although studies have reported the intricate nature of JA as a biomolecular entity for the mitigation of abiotic stressors, their underlying mechanism and biosynthetic pathways remain poorly understood. Therefore, this review offers an overview of recent progress made in understanding the biosynthesis of JA, elucidates the complexities of its signal transduction pathways, and emphasizes its pivotal role in mitigating abiotic and biotic stressors. Moreover, we also discuss current issues and future research directions for JAs in plant stress responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA