Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Diabetologia ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251430

RESUMO

AIMS/HYPOTHESIS: Appropriate management of blood glucose levels and the prevention of complications are important in the treatment of diabetes. We have previously reported on a compound named HPH-15 that is not only antifibrotic but also AMP-activated protein kinase (AMPK)-activating. In this study, we evaluated whether HPH-15 is useful as a therapeutic medication for diabetes. METHODS: We examined the effects of HPH-15 on AMPK activation, glucose uptake, fat accumulation and lactic acid production in L6-GLUT4, HepG2 and 3T3-L1 cells, as a model of muscle, liver and fat tissue, respectively. Additionally, we investigated the glucose-lowering, fat-accumulation-suppressing, antifibrotic and AMPK-activating effect of HPH-15 in mice fed a high-fat diet (HFD). RESULTS: HPH-15 at a concentration of 10 µmol/l increased AMPK activation, glucose uptake and membrane translocation of GLUT4 in each cell model to the same extent as metformin at 2 mmol/l. The production of lactic acid (which causes lactic acidosis) in HPH-15-treated cells was equal to or less than that observed in metformin-treated cells. In HFD-fed mice, HPH-15 lowered blood glucose from 11.1±0.3 mmol/l to 8.2±0.4 mmol/l (10 mg/kg) and 7.9±0.4 mmol/l (100 mg/kg) and improved insulin resistance. The HPH-15 (10 mg/kg) group showed the same level of AMPK activation as the metformin (300 mg/kg) group in all organs. The HPH-15-treated HFD-fed mice also showed suppression of fat accumulation and fibrosis in the liver and fat tissue; these effects were more significant than those obtained with metformin. Mice treated with high doses of HPH-15 also exhibited a 44% reduction in subcutaneous fat. CONCLUSIONS/INTERPRETATION: HPH-15 activated AMPK at lower concentrations than metformin in vitro and in vivo and improved blood glucose levels and insulin resistance in vivo. In addition, HPH-15 was more effective than metformin at ameliorating fatty liver and adipocyte hypertrophy in HFD-fed mice. HPH-15 could be effective in preventing fatty liver, a common complication in diabetic individuals. Additionally, in contrast to metformin, high doses of HPH-15 reduced subcutaneous fat in HFD-fed mice. Presumably, HPH-15 has a stronger inhibitory effect on fat accumulation and fibrosis than metformin, accounting for the reduction of subcutaneous fat. Therefore, HPH-15 is potentially a glucose-lowering medication that can lower blood glucose, inhibit fat accumulation and ameliorate liver fibrosis.

2.
ACS Omega ; 9(32): 34358-34369, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157105

RESUMO

We developed and synthesized tetrahydropyrimidine derivatives as possible cytotoxic agents to inhibit EGFR and VEGFR-2 in the present study. Our study completely assesses the cytotoxic efficiency of pyrimidine-based derivatives 4-15 against various cancer cell lines, revealing derivatives 12 and 15 for their remarkable activity with GI50 values of 37 and 35 nM, respectively, when compared to the reference erlotinib (33 nM). In vitro enzyme assays showed that target compounds, particularly 12, 14, and 15, effectively inhibited EGFR and VEGFR-2. In vitro enzyme testing revealed that compound 15 was the most promising, with IC50 values of 84 and 3.50 nM for EGFR and VEGFR-2, respectively. Additionally, an in vitro assessment of the novel targets' apoptotic potential revealed that both pro-apoptotic and antiapoptotic behaviors were promising, indicating that the apoptotic induction pathway is a strongly proposed action method for the newly developed targets. Finally, molecular docking experiments are elaborately discussed to corroborate the exact binding interactions of the most active hybrids 12 and 15 with the EGFR and VEGFR-2 active sites.

3.
Life Sci ; 352: 122872, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38942361

RESUMO

Aim Hepatic ischemia reperfusion injury (HIRI) is a leading cause of mortality post liver transplantation, hypovolemic shock and trauma. In this study, we tested, on molecular bases, the possible protective role of two different derivatives of 2-oxindole in a preclinical model of HIRI in rats. MAIN METHODS: HIRI was operated in male Wistar albino rats and prophylactic treatment with oxindole-curcumin (Coxi) or oxindole-vanillin (Voxi) was carried out before the operation. The biochemical and histopathological investigations, in addition to the mechanistic characterizations of the effect of the tested drugs were performed. KEY FINDINGS: HIRI was assured with elevated liver enzymes and marked changes in histopathological features, inflammatory response and oxidative stress. Pretreatment with Coxi and Voxi improved the hepatic histopathological alterations, reduced the elevated serum liver enzymes level and hepatic Malondialdehyde (MDA) content, increased the hepatic Superoxide Dismutase (SOD) activity and reduced Glutathione (GSH) content, downregulated the expression of TNF-α, IL-6, Nod-Like Receptor p3 (NLRP3), Cleaved caspase1, Cleaved caspase 3 proteins, alongside the expression level of IL-1ß, ICAM-1, VCAM-1 and BAX genes, attenuated NF-кB p-P65 Ser536 and Myeloperoxidase (MPO)-positive neutrophils, and activated the PI3K/AKT pathway. SIGNIFICANCE: Coxi and Voxi have promising hepatoprotective activity against HIRI in rats through ameliorating the biochemical and histopathological alterations, attenuating inflammatory and oxidative stress status by modulating the inflammatory TNF-α/ICAM-1, the pyroptosis NLRP3/Caspase-1, and the antioxidant PI3K/AKT pathways.


Assuntos
Caspase 1 , Modelos Animais de Doenças , Fígado , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Oxindóis , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Oxindóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Transdução de Sinais/efeitos dos fármacos , Caspase 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Hepatopatias/patologia , Hepatopatias/tratamento farmacológico
4.
Pharmaceuticals (Basel) ; 17(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794229

RESUMO

Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 µM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 µM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.

5.
Front Chem ; 12: 1387923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800576

RESUMO

A novel series of dihydropyrimidine/sulphonamide hybrids 3a-j with anti-inflammatory properties have been developed and tested as dual mPGES-1/5-LOX inhibitors. In vitro assay, results showed that compounds 3c, 3e, 3h, and 3j were the most effective dual inhibitors of mPGES-1 and 5-LOX activities. Compound 3j was the most potent dual inhibitor with IC50 values of 0.92 µM and 1.98 µM, respectively. In vivo, anti-inflammatory studies demonstrated that compounds 3c, 3e, 3h, and 3e had considerable anti-inflammatory activity, with EI% ranging from 29% to 71%. Compounds 3e and 3j were equivalent to celecoxib after the first hour but exhibited stronger anti-inflammatory effects than celecoxib after the third and fifth hours. Moreover, compounds 3e and 3j significantly reduced the levels of pro-inflammatory cytokines (PGE2, TNF-α, and IL-6) with gastrointestinal safety profiles. Molecular docking simulations explored the most potent derivatives' binding affinities and interaction patterns within mPGES-1 and 5-LOX active sites. This study disclosed that compound 3j is a promising anti-inflammatory lead with dual mPGES-1/5-LOX inhibition that deserves further preclinical investigation.

6.
Bioorg Chem ; 145: 107234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412650

RESUMO

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Assuntos
Antineoplásicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Sunitinibe/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Angiogênese/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
7.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446914

RESUMO

Acute myeloid leukemia (AML) is one of the cancers that grow most aggressively. The challenges in AML management are huge, despite many treatment options. Mutations in FLT3 tyrosine kinase receptors make the currently available therapies less responsive. Therefore, there is a need to find new lead molecules that can specifically target mutated FLT3 to block growth factor signaling and inhibit AML cell proliferation. Our previous studies on FLT3-mutated AML cells demonstrated that ß-elemene and compound 5a showed strong inhibition of proliferation by blocking the mutated FLT3 receptor and altering the key apoptotic genes responsible for apoptosis. Furthermore, we hypothesized that both ß-elemene and compound 5a could be therapeutically effective. Therefore, combining these drugs against mutated FLT3 cells could be promising. In this context, dose-matrix combination-based cellular inhibition analyses, cell morphology studies and profiling of 43 different apoptotic protein targets via combinatorial treatment were performed. Our studies provide strong evidence for the hypothesis that ß-elemene and compound 5a combination considerably increased the therapeutic potential of both compounds by enhancing the activation of several key targets implicated in AML cell death.


Assuntos
Leucemia Mieloide Aguda , Humanos , Oxindóis/farmacologia , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Mutação , Apoptose , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia
8.
BMC Chem ; 17(1): 73, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438819

RESUMO

Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.

9.
ACS Omega ; 8(7): 6968-6981, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844536

RESUMO

The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 µM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.

10.
Sci Rep ; 13(1): 2146, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750593

RESUMO

Sirtuin 2 (SIRT2) is a member of the sirtuin protein family, which includes lysine deacylases that are NAD+-dependent and organize several biological processes. Different forms of cancer have been associated with dysregulation of SIRT2 activity. Hence, identifying potent inhibitors for SIRT2 has piqued considerable attention in the drug discovery community. In the current study, the Natural Products Atlas (NPAtlas) database was mined to hunt potential SIRT2 inhibitors utilizing in silico techniques. Initially, the performance of the employed docking protocol to anticipate ligand-SIRT2 binding mode was assessed according to the accessible experimental data. Based on the predicted docking scores, the most promising NPAtlas molecules were selected and submitted to molecular dynamics (MD) simulations, followed by binding energy computations. Based on the MM-GBSA binding energy estimations over a 200 ns MD course, three NPAtlas compounds, namely NPA009578, NPA006805, and NPA001884, were identified with better ΔGbinding towards SIRT2 protein than the native ligand (SirReal2) with values of - 59.9, - 57.4, - 53.5, and - 49.7 kcal/mol, respectively. On the basis of structural and energetic assessments, the identified NPAtlas compounds were confirmed to be steady over a 200 ns MD course. The drug-likeness and pharmacokinetic characteristics of the identified NPAtlas molecules were anticipated, and robust bioavailability was predicted. Conclusively, the current results propose potent inhibitors for SIRT2 deserving more in vitro/in vivo investigation.


Assuntos
Antineoplásicos , Sirtuína 2 , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Ligantes , Descoberta de Drogas , Simulação de Acoplamento Molecular
11.
Mol Divers ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790582

RESUMO

New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.

12.
Arch Pharm (Weinheim) ; 356(2): e2200407, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36403191

RESUMO

FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-ß. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Oxindóis , Tirosina Quinase 3 Semelhante a fms , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade
13.
RSC Adv ; 12(30): 19505-19511, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865563

RESUMO

In late December 2019, a pandemic coronavirus disease 2019 (COVID-19) emerged in Wuhan, China and spread all over the globe. One of the promising therapeutic techniques of viral infection is to search for enzyme inhibitors among natural phytochemicals using molecular docking to obtain leads with the least side effects. The COVID-19 virus main protease (Mpro) is considered as an attractive target due to its pivotal role in controlling viral transcription and replication. Metabolic profiling of the crude extract of Livistona decipiens Becc. (Arecaceae) leaves and fruit dereplicated twelve metabolites using LC-HRESIMS. Molecular docking simulation and in silico ADME profiling of these annotated compounds proposed that tricin is a promising lead against COVID-19 virus Mpro. The alcoholic extract was shown to inhibit SARS-CoV-2 through in vitro culture and RT-PCR testing with EC50 = 0.122 and 1.53 µg mL-1 for leaves and fruit extracts, respectively, when compared with that of the FDA-approved anti-COVID-19 remdesivir (0.002 µg mL-1). Preliminary steps were also performed including the 3CL-protease inhibition assay and cytotoxicity study. It is worthwhile to find a cheap, safe, natural source for promising anti-SARS-CoV-2 agents that can be further tested in vivo against the COVID-19 virus Mpro. This study provides scientific basis for demonstrating beneficial effects of L. decipiens application on human health during the corona pandemic.

14.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563439

RESUMO

Cancer metastasis accounts for most of the mortality associated with solid tumors. However, antimetastatic drugs are not available on the market. One of the important biological events leading to metastasis is the epithelial to mesenchymal transition (EMT) induced by cytokines, namely transforming growth-factor-ß (TGF-ß). Although several classes of inhibitors targeting TGF-ß and its receptor have been developed, they have shown profound clinical side effects. We focused on our synthetic compound, HPH-15, which has shown anti-fibrotic activity via the blockade of the TGF-ß Smad-dependent signaling. In this study, 10 µM of HPH-15 was found to exhibit anti-cell migration and anti-EMT activities in non-small-cell lung cancer (NSCLC) cells. Although higher concentrations are required, the anti-EMT activity of HPH-15 has also been observed in 3D-cultured NSCLC cells. A mechanistic study showed that HPH-15 inhibits downstream TGF-ß signaling. This downstream inhibition blocks the expression of cytokines such as TGF-ß, leading to the next cycle of Smad-dependent and -independent signaling. HPH-15 has AMPK-activation activity, but a relationship between AMPK activation and anti-EMT/cell migration was not observed. Taken together, HPH-15 may lead to the development of antimetastatic drugs with a new mechanism of action.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Transdução de Sinais , Fator de Crescimento Transformador beta , Proteínas Quinases Ativadas por AMP , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores
15.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455423

RESUMO

The inhibition of glycogen synthase kinase 3ß (GSK3ß) activity through pharmacological intervention represents a promising approach for treating challenging neurodegenerative disorders like Alzheimer's disease. Similarly, abnormal tau aggregate accumulation in neurons is a hallmark of various neurodegenerative diseases. We introduced new dual GSK3ß/tau aggregation inhibitors due to the excellent clinical outcome of multitarget drugs. Compound (E)-2f stands out among the synthesized inhibitors as a promising GSK3ß inhibitor (IC50 1.7 µM) with a pronounced tau anti-aggregation effect in a cell-based model of tauopathy. Concurrently, (E)-2f was demonstrated to be non-toxic to normal cells, making it a promising neuroprotective lead compound that needs further investigation.

16.
RSC Adv ; 12(5): 2992-3002, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425294

RESUMO

In the current study, an investigation of the activity of the total extract of the marine sponge Spongia irregularis and its different fractions against the hepatitis C virus (HCV) was pursued. The results revealed that the ethyl acetate fraction exhibited the highest anti-HCV activity, with an IC50 value of 12.6 ± 0.05 µg ml-1. Chromatographic resolution of the ethyl acetate fraction resulted in the isolation of four known compounds, 1,3,7-trimethylguanine (1), 3,5-dihydroxyfuran-2(5H)-one (2), thymidine (3), and 1H-indazole (4). By using LC-HR-ESI-MS metabolic profiling, compounds 5-14 were also identified in the same fraction. Molecular docking calculations revealed the high binding affinity of compound 14 against the allosteric pocket of HCV NS3-NS4A and the active site of HCV NS3 helicase (-10.1 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations, followed by molecular mechanics-generalized Born surface area energy calculations, demonstrated the structural and energetic stability of compound 14 in complex with HCV targets.

17.
Nat Prod Res ; 36(5): 1391-1395, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33487065

RESUMO

The current biologically guided study aimed the in vitro investigation of cytotoxic activity, identification of the phytochemical content of Moluccella laevis L. aerial parts and supporting this activity by a molecular docking study. Aqueous fraction demonstrated the most potent cytotoxic effect against CACO-2 with IC50 = 0.067 ± 0.01 µg/mL. Furthermore, EtOAc fraction showed a remarkable cytotoxic activity against MCF-7 cell line with IC50 = 0.35 ± 0.02 µg/mL. Consequently, total ethanolic extract (TEE) and its fractions were subjected to LC-HR-ESI-MS metabolic profiling to discover the constituents that possibly underlie their cytotoxicity. Twenty compounds were tentatively identified from metabolic analysis. Furthermore, eight compounds were isolated. In silico docking study revealed that stachydrine is more likely to account for the antiproliferative activity of both EtOAc and aqueous fractions, probably via its moderate inhibition of receptor tyrosine kinases. [Formula: see text].


Assuntos
Lamiaceae , Células CACO-2 , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/análise , Componentes Aéreos da Planta/química , Extratos Vegetais/química
18.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34832895

RESUMO

A series of 3-benzylideneindolin-2-one compounds was designed and synthesized based on combretastatin A-4 and compound IC261, a dual casein kinase (CK1)/tubulin polymerization inhibitor, taking into consideration the pharmacophore required for EGFR-tyrosine kinase inhibition. The new molecular entities provoked significant growth inhibition against PC-3, MCF-7 and COLO-205 at a 10 µM dose. Compounds 6-chloro-3-(2,4,6-trimethoxybenzylidene) indolin-2-one, 4b, and 5-methoxy-3-(2,4,6-trimethoxybenzylidene)indolin-2-one, 4e, showed potent activity against the colon cancer COLO-205 cell line with an IC50 value of 0.2 and 0.3 µM. A mechanistic study demonstrated 4b's efficacy in inhibiting microtubule assembly (IC50 = 1.66 ± 0.08 µM) with potential binding to the colchicine binding site (docking study). With an IC50 of 1.92 ± 0.09 µg/mL, 4b inhibited CK1 almost as well as IC261. Additionally, 4b and 4e were effective inhibitors of EGFR-TK with IC50s of 0.19 µg/mL and 0.40 µg/mL compared to Gifitinib (IC50 = 0.05 µg/mL). Apoptosis was induced in COLO-205 cells treated with 4b, with apoptotic markers dysregulated. Caspase 3 levels were elevated to more than three-fold, while Cytochrome C levels were doubled. The cell cycle was arrested in the pre-G1 phase with extensive cellular accumulation in the pre-G1 phase, confirming apoptosis induction. Levels of cell cycle regulating proteins BAX and Bcl-2 were also defective. The binding interaction patterns of these compounds at the colchicine binding site of tubulin and the Gifitinib binding site of EGFR were verified by molecular docking, which adequately matched the reported experimental result. Hence, 4b and 4e are considered promising potent multitarget agents against colon cancer that require optimization.

19.
Eur J Med Chem ; 224: 113709, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303869

RESUMO

Sirtuin 2 (SIRT2) is a member of the human sirtuins, which regulates various biological processes and is deemed as a novel biomarker for different cancers. Depending on the tumor type, SIRT2 knockout leads to a controversial role in tumorigenesis, however, pharmacological inhibition of SIRT2 results exclusively in growth inhibition of various cancer cells. In this respect, selective SIRT2 inhibitors hold therapeutic promise in a wide range of tumors. The literature has a batch of successful stories of SIRT2 modulators discovery. This review presents our perspective on the up-to-date selective SIRT2 inhibitors and their antiproliferative activity.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Sirtuína 2/antagonistas & inibidores , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Neoplasias/patologia , Sirtuína 2/metabolismo
20.
RSC Adv ; 11(52): 32740-32749, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35493564

RESUMO

Chemical investigation of Aptenia cordifolia roots extract, using chromatographic and spectroscopic techniques, resulted in isolation and identification of eight known compounds. The basic ethyl acetate fraction (alkaloidal fraction) afforded O-methylsceletenone, epinine, 4-methoxy phenethylamine, and N-methyl tyramine while, the acidic ethyl acetate fraction (non-alkaloidal fraction) afforded only cis-N-coumaroyl tyramine. Moreover, the petroleum ether fraction afforded capric acid, tricosanol, and a mixture of ß-sitosterol & stigma sterol. Upon screening of anti HCV activity of these three fractions, only the basic ethyl acetate fraction had high activity against HCV with an IC50 value equal to 2.4 µg mL-1 which provoked us to carry out structure based in silico virtual screening on the drug targets of HCV of isolated alkaloidal compounds as well as the previously dereplicated alkaloids through metabolomics from the antiviral active fraction. The tortuosamine compound exhibited the strongest binding to the active site of NS3/4A helicase with a binding affinity (-7.1 kcal mol-1) which is very close to the native ligand (-7.7 kcal mol-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA