Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Pharmaceutics ; 16(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543274

RESUMO

Heat-shock proteins (HSPs) are stress-responsive molecules belonging to the family of evolutionary molecular chaperones known to be crucial in many cancer types, including human alveolar adenocarcinoma cells (A549). These proteins are highly overexpressed in cancers to support their ability to accommodate imbalances in cell signalling, DNA alterations, proteins, and energy metabolism associated with oncogenesis. The current study evaluated the effects of gold nanoparticles (AuNPs) combined with cisplatin (CDDP) on molecular chaperone HSPs in A549 cells. It was found that AuNPs:CDDP decreased the percentage of cell viability (38.5%) measured using the modified lactated dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. AuNPs:CDDP exposure caused a significant (p < 0.05) increase in reactive oxygen species (ROS) generation by 1.81-fold, apoptosis induction, and a decrease in the mitochondrial membrane potential (MMP) compared to AuNPs or CDDP alone. Similarly, exposure to the AuNPs:CDDP combination had pronounced cytotoxic effects on the expression of HSPs and PI3K/AKT/mTOR, as well as apoptosis-related proteins. The results demonstrate that the combination of AuNPs with CDDP might enhance the anticancer efficacy of CDDP.

2.
ACS Omega ; 8(43): 40622-40638, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929120

RESUMO

Functionalized gold nanoparticles (AuNPs) are widely used in therapeutic applications, but little is known regarding the impact of their surface functionalization in the process of toxicity against cancer cells. This study investigates the anticancer effects of 5 nm spherical AuNPs functionalized with tannate, citrate, and PVP on deubiquitinating enzymes (DUBs) in human lung alveolar adenocarcinoma (A549) cells. Our findings show that functionalized AuNPs reduce the cell viability in a concentration- and time-dependent manner as measured by modified lactate dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. An increased generation of intracellular reactive oxygen species (ROS) and depletion of glutathione (GSH/GSSG) ratio was observed with the highest AuNP concentration of 10 µg/mL. The expression of DUBs such as ubiquitin specific proteases (USP7, USP8, and USP10) was slightly inhibited when treated with concentrations above 2.5 µg/mL. Moreover, functionalized AuNPs showed an inhibitory effect on protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and wingless-related integration site (Wnt) signaling proteins, and this could further trigger mitochondrial related-apoptosis by the upregulation of caspase-3, caspase-9, and PARP in A549 cells. Furthermore, our study shows a mechanistic understanding of how functionalized AuNPs inhibit the DUBs, consequently suppressing cell proliferation, and can be modulated as an approach toward anticancer therapy. The study also warrants the need for future work to investigate the effect of functionalized AuNPs on DUB on other cancer cell lines both in vitro and in vivo.

3.
Aquat Toxicol ; 260: 106552, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182271

RESUMO

The expanding use of hybrid nanomaterials in many applications necessitates evaluation of their environmental risks. This study investigates the acute toxicity and bioaccumulation of graphene oxide - gold (GO-Au) nanohybrid in neonates (<24 hrs old) of Daphnia magna after exposure to a wide range of concentrations (1-100 mg/L). No significant mortality or immobilisation was observed after the exposure period. Microscopic observation showed an uptake of the nanohybrid and internal damage in the gut of the exposed organisms. Bioaccumulation of the GO-Au nanohybrid also occurred in a concentration-dependant manner. Continuous evaluation of the environmental risks from exposure to this nanohybrid and other advanced materials is imperative to avert disruption to the ecosystem.


Assuntos
Ouro , Poluentes Químicos da Água , Animais , Ouro/toxicidade , Daphnia , Ecossistema , Poluentes Químicos da Água/toxicidade
4.
Microorganisms ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36985182

RESUMO

As the production of graphene-based nanomaterials such as GO is increasing, it is expected that a large amount of GO waste will be generated. The environment (i.e., soil and aquatic systems) will be amongst the final repositories of these wastes which means important natural microbial communities in such environments will be at risk of GO exposure. However, little is known about how these communities respond to environmental stresses in synergy with the presence of GO. In this study, the effect of three different stress conditions: temperature (5, 25 and 40 °C); pH (5 to 9) and osmotic stress (51, 219 and 320 mM NaCl) in addition to GO treatment was investigated on the viability and physiology of biofilms and planktonic cells of soil bacterium P. putida. It was found that planktonic cells were more resistant to GO alone compared to biofilms. However, the cells were sensitive to GO when exposed to pH or osmotic stresses. Temperature was not found to influence the survival of biofilm with or without exposure to GO. However, low pH caused a reduction in colony-forming units (CFU) at pHs 5 and 6 for the pre-treated samples, while biofilms at pH 7-9 did not show any decrease. Interestingly, the post-treatment of planktonic cells or biofilms with GO showed a significant reduction in CFU at all pH ranges. The effect of higher osmotic stress in combination with GO resulted in a significant reduction in biofilms. These results show that the effect of stresses naturally occurring in the environment can be affected and changed when in combination with GO and can potentially affect the balance of natural biofilms.

5.
Pharmaceutics ; 15(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839757

RESUMO

Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5-30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome.

6.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615944

RESUMO

This paper reports the synthesis and characterization of a graphene oxide-gold nanohybrid (GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of nano-Au decorations, via the chemical reduction of gold (III) using sodium citrate. The GO-Au nanohybrid synthesis was successful, producing AuNPs (~17.09 ± 4.6 nm) that were homogenously distributed on the GO sheets. They exhibited reproducible characteristics when characterised using UV-Vis, TGA, TEM, FTIR, AFM, XPS and Raman spectroscopy. The nanohybrid also showed good stability in different environmental media and its physicochemical characteristics did not deteriorate over a period of months. The amount of Au in each of the GO-Au nanohybrid samples was highly comparable, suggesting a potential for use as chemical label. The outcome of this research represents a crucial step forward in the development of a standard protocol for the synthesis of GO-Au nanohybrids. It also paves the way towards a better understanding of the nanotoxicity of GO-Au nanohybrid in biological and environmental systems.

7.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260400

RESUMO

Understanding the potential of nanomaterials (NMs) to cross the blood-brain barrier (BBB), as a function of their physicochemical properties and subsequent behavior, fate, and adverse effect beyond that point, is vital for evaluating the neurological effects arising from their unintentional entry into the brain, which is yet to be fully explored. This is not only due to the complex nature of the brain but also the existing analytical limitations for characterization and quantification of NMs in the complex brain environment. By using a fit-for-purpose analytical workflow and an in vitro BBB model, we show that the physiochemical properties of metallic NMs influence their biotransformation in biological matrices, which in turn modulates the transport form, efficiency, amounts, and pathways of NMs through the BBB and, consequently, their neurotoxicity. The data presented here will support in silico modeling and prediction of the neurotoxicity of NMs and facilitate the tailored design of safe NMs.


Assuntos
Barreira Hematoencefálica/metabolismo , Metais/química , Nanoestruturas/química , Astrócitos/metabolismo , Biotransformação , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Exocitose , Humanos , Microvasos/citologia , Modelos Biológicos , Permeabilidade , Transcitose
8.
Environ Sci Pollut Res Int ; 26(24): 25057-25070, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250387

RESUMO

Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 µg/mL or 8.5 µg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Grafite/farmacologia , Óxidos/química , Pseudomonas putida/química , Antibacterianos/química , Grafite/química , Pseudomonas putida/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier
9.
RSC Adv ; 8(30): 16444-16454, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30009019

RESUMO

The geometries and surface properties of nanocarriers greatly influence the interaction between nanomaterials and living cells. In this work we combine multiwalled carbon nanotubes (CNTs) with poly-ε-caprolactone (PCL) to produce non-spherical nanocomposites with high aspect ratios by using a facile emulsion solvent evaporation method. Particles were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and asymmetric flow field flow fractionation (AF4). Different sizes and morphologies of nanoparticles were produced depending on the concentration of the sodium dodecyl sulphate (SDS), CNTs and PCL. Rod-like PCL-CNT nanostructures with low polydispersity were obtained with 1.5 mg mL-1 of SDS, 0.9 mg mL-1 of CNTs and 10 mg mL-1 PCL. AFM analysis revealed that the PCL and PCL-CNT nanocomposite had comparatively similar moduli of 770 and 560 MPa respectively, indicating that all the CNTs have been coated with at least 2 nm of PCL. Thermogravimetric analysis of the PCL-CNT nanocomposite indicated that they contained 9.6% CNTs by mass. The asymmetric flow field flow fractionation of the samples revealed that the PCL-CNT had larger hydrodynamic diameters than PCL alone. Finally, the drug loading properties of the nanocomposites were assessed using docetaxel as the active substance. The nanocomposites showed comparable entrapment efficiencies of docetaxel (89%) to the CNTs alone (95%) and the PCL nanoparticles alone (81%). This is a facile method for obtaining non-spherical nanocomposites that combines the properties of PCL and CNTs such as the high aspect ratio, modulus. The high drug entrapment efficiency of these nanocomposites may have promising applications in drug delivery.

10.
Chemistry ; 21(42): 14886-92, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26331300

RESUMO

In drug delivery, carbon nanotubes (CNTs) hold a great potential as carriers because of their ability to easily cross biological barriers and be internalised into cells. Their high aspect ratio allows multi-functionalisation and their development as a multimodal platform for targeted therapy. In this article, we report the controlled covalent derivatisation of triple-functionalised CNTs with the anticancer drug gemcitabine, folic acid as a targeting ligand and fluorescein as a probe. The anticancer activity of gemcitabine was maintained after covalent grafting onto the CNTs. The functionalised nanotubes were internalised into both folate-positive and negative cells, suggesting the passive diffusion of CNTs. Overall, our approach is versatile and offers a precise chemical control of the sidewall functionalisation of CNTs and the possibility to manoeuvre the types of functionalities required on the nanotubes for a multimodal therapeutic strategy.

12.
Adv Drug Deliv Rev ; 65(15): 2111-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24184372

RESUMO

Carbon nanotubes (CNT) are increasingly being investigated for their use in biomedical applications and nanomedicine. An emergent need for the understanding of their in vivo biodistribution and pharmacokinetics is therefore needed to establish the essential properties and criteria for their further development as targeted CNT delivery systems to specific tissues for diagnostics and therapeutic purposes. Until their biodistribution and toxicoketic profiles are fully understood, their translation into the clinic will be hindered. This review will highlight the important factors affecting the biodistribution and pharmacokinetic profile of CNT and address their toxicokinetics following systemic, pulmonary and dermal exposure.


Assuntos
Nanomedicina/métodos , Nanotubos de Carbono/química , Farmacocinética , Animais , Humanos , Pulmão/metabolismo , Nanotubos de Carbono/toxicidade , Pele/metabolismo , Distribuição Tecidual
13.
Nanoscale ; 5(21): 10242-50, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24056765

RESUMO

Study of the mechanisms understanding how chemically functionalized carbon nanotubes internalize into mammalian cells is important in view of their design as new tools for therapeutic and diagnostic applications. The initial contact between the nanotube and the cell membrane allows elucidation of the types of interaction that are occurring and the contribution from the types of functional groups at the nanotube surface. Here we offer a combination of experimental and theoretical evidence of the initial phases of interaction between functionalized carbon nanotubes with model and cellular membranes. Both experimental and theoretical data reveal the critical parameters to determine direct translocation of the nanotubes through the membrane into the cytoplasm as a result of three distinct processes that can be summarized as landing, piercing and uptake.


Assuntos
Membrana Celular/química , Nanotubos de Carbono/química , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Humanos , Lipossomos/química , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Temperatura
14.
Adv Mater ; 25(16): 2258-68, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23494834

RESUMO

Graphene materials have entered a phase of maturity in their development that is characterized by their explorative utilization in various types of applications and fields from electronics to biomedicine. Herein, we describe the recent advances made with graphene-related materials in the biomedical field and the challenges facing these exciting new tools both in terms of biological activity and toxicological profiling in vitro and in vivo. Graphene materials today have mainly been explored as components of biosensors and for construction of matrices in tissue engineering. Their antimicrobial activity and their capacity to act as drug delivery platforms have also been reported, however, not as coherently. This report will attempt to offer some perspective as to which areas of biomedical applications can expect graphene-related materials to constitute a tool offering improved functionality and previously unavailable options.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Portadores de Fármacos , Grafite , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/toxicidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Portadores de Fármacos/uso terapêutico , Portadores de Fármacos/toxicidade , Grafite/química , Grafite/farmacologia , Grafite/uso terapêutico , Grafite/toxicidade , Humanos , Fotoquimioterapia , Engenharia Tecidual
16.
Acc Chem Res ; 46(3): 692-701, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23163827

RESUMO

Many consider carbon nanomaterials the poster children of nanotechnology, attracting immense scientific interest from many disciplines and offering tremendous potential in a diverse range of applications due to their extraordinary properties. Graphene is the youngest in the family of carbon nanomaterials. Its isolation, description, and mass fabrication has followed that of fullerenes and carbon nanotubes. Graphene's development and its adoption by many industries will increase unintended or intentional human exposure, creating the need to determine its safety profile. In this Account, we compare the lessons learned from the development of carbon nanotubes with what is known about graphene, based on our own investigations and those of others. Despite both being carbon-based, nanotubes and graphene are two very distinct nanomaterials. We consider the key physicochemical characteristics (structure, surface, colloidal properties) for graphene and carbon nanotubes at three different physiological levels: cellular, tissue, and whole body. We summarize the evidence for health effects of both materials at all three levels. Overall, graphene and its derivatives are characterized by a lower aspect ratio, larger surface area, and better dispersibility in most solvents compared to carbon nanotubes. Dimensions, surface chemistry, and impurities are equally important for graphene and carbon nanotubes in determining both mechanistic (aggregation, cellular processes, biodistribution, and degradation kinetics) and toxicological outcomes. Colloidal dispersions of individual graphene sheets (or graphene oxide and other derivatives) can easily be engineered without metallic impurities, with high stability and less aggregation. Very importantly, graphene nanostructures are not fiber-shaped. These features theoretically offer significant advantages in terms of safety over inhomogeneous dispersions of fiber-shaped carbon nanotubes. However, studies that directly compare graphene with carbon nanotubes are rare, making comparative considerations of their overall safety and risk assessment challenging. In this Account, we attempt to offer a set of rules for the development of graphene and its derivatives to enhance their overall safety and minimize the risks for adverse reactions in humans from exposure. These rules are: (1) to use small, individual graphene sheets that macrophages in the body can efficiently internalize and remove from the site of deposition; (2) to use hydrophilic, stable, colloidal dispersions of graphene sheets to minimize aggregation in vivo; and (3) to use excretable graphene material or chemically-modified graphene that can be degraded effectively. Such rules can only act as guidelines at this early stage in the development of graphene-based technologies, yet they offer a set of design principles for the fabrication and safe use of graphene material that will come in contact with the human body. In a broader context, the safety risks associated with graphene materials will be entirely dependent on the specific types of graphene materials and how they are investigated or applied. Therefore, generalizations about the toxicity of "graphene" as a whole will be inaccurate, possibly misleading, and should be avoided.


Assuntos
Grafite/química , Nanotubos de Carbono/toxicidade , Segurança , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Humanos , Nanotubos de Carbono/química , Fatores de Risco
17.
Adv Healthc Mater ; 2(3): 433-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23184580

RESUMO

Prompted by the excitement from the description of single layer graphene, increased attention for potential applications in the biomedical field has been recently placed on graphene oxide (GO). Determination of the opportunities and limitations that GO offers in biomedicine are particularly prone to inaccuracies due to wide variability in the preparation methodologies of GO material in different laboratories, that results in significant variation in the purity of the material and the yield of the oxidation reactions, primarily the Hummers method used. Herein, the fabrication of highly pure, colloidally stable, and evenly dispersed GO in physiologically-relevant aqueous buffers in comparison to conventional GO is investigated. The purified GO material is thoroughly characterized by a battery of techniques, and is shown to consist of single layer GO sheets of lateral dimensions below 500 nm. The cytotoxic impact of the GO in vitro and its inflammation profile in vivo is investigated. The purified GO prepared and characterized here does not induce significant cytotoxic responses in vitro, or inflammation and granuloma formation in vivo following intraperitoneal injection. This is one of the initial steps towards determination of the safety risks associated with GO material that may be interacting with living tissue.


Assuntos
Grafite/química , Grafite/toxicidade , Nanoestruturas/química , Nanoestruturas/toxicidade , Óxidos/química , Óxidos/toxicidade , Animais , Líquido Ascítico/química , Líquido Ascítico/citologia , Líquido Ascítico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Coloides/química , Feminino , Granuloma/induzido quimicamente , Granuloma/patologia , Grafite/administração & dosagem , Humanos , Inflamação/induzido quimicamente , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/administração & dosagem , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Óxidos/administração & dosagem
18.
Angew Chem Int Ed Engl ; 51(26): 6389-93, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22623333

RESUMO

Getting rid of the tubes: An assessment of the retention of functionalized multi-walled carbon nanotubes (MWNTs) in the organs of mice was carried out using single photon emission computed tomography and quantitative scintigraphy (see scheme). Increasing the degree of functionalization on MWNTs enhanced renal clearance, while lower functionalization promoted reticuloendethelial system accumulation.


Assuntos
Aminas/química , Nanotubos de Carbono/química , Aminas/farmacocinética , Animais , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Estrutura Molecular , Nanotubos de Carbono/ultraestrutura , Especificidade de Órgãos
19.
Chem Commun (Camb) ; 48(33): 3911-26, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22428156

RESUMO

The use of carbon nanotubes (CNTs) as polyvalent tools for cancer treatment is progressing at a very fast pace. The most promising approach is the targeted delivery of drugs, designed to selectively direct the therapeutic treatment towards the tumours. CNTs may offer several advantages to overcome one of the main limitations of most existing anticancer therapies, namely the lack of selectivity. Herein, an account of the existing literature on CNT-based nanomedicine for cancer treatment is given. The most significant results obtained so far in the field of drug delivery are presented for many anticancer chemotherapeutics (doxorubicin, methotrexate, taxanes, platinum analogues, camptothecine and gemcitabine), but also for immunotherapeutics and nucleic acids. Moreover, the alternative anticancer therapies based on thermal ablation and radiotherapy are discussed. The attention throughout the review is focused on the different targeting strategies proposed so far, mainly based on antibodies, but also on other specifically recognised molecules or on the application of an external magnetic field.


Assuntos
Portadores de Fármacos , Nanomedicina/métodos , Nanotubos de Carbono , Neoplasias/terapia , Técnicas de Ablação , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Humanos , Imunoterapia , Nanotubos de Carbono/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/radioterapia
20.
Small ; 7(22): 3230-8, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21919194

RESUMO

The impact of nanomaterials such as carbon nanotubes on biological matter is a topic of increasing interest and concern and requires a multifaceted approach to be resolved. A modified cytotoxic (lactate dehydrogenase (LDH)) assay is developed in an attempt to offer a valid and reliable methodology for screening carbon nanotube toxicity in vitro. Two of the most widely used types of surface-modified multiwalled carbon nanotubes (MWNTs) are tested: ammonium-functionalized MWNTs (MWNT-NH3+ ) and Pluronic F127 coated MWNTs (MWNT:F127). Chemically functionalized MWNTs show significantly greater cellular uptake into lung epithelial A549 cells compared to the non-covalently Pluronic F127-coated MWNTs. In spite of this, MWNT:F127 exhibit enhanced cytotoxicity according to the modified LDH assay. The validity of the modified LDH assay is further validated by direct comparison with other less reliable or accurate cytotoxicity assays. These findings indicate the reliability of the modified LDH assay as a screening tool to assess carbon nanotube cytotoxicity and illustrate that high levels of carbon nanotube cellular internalization do not necessarily lead to adverse responses.


Assuntos
Endocitose/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Polímeros/química , Anexina A5/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanotubos de Carbono/ultraestrutura , Propídio/metabolismo , Propriedades de Superfície/efeitos dos fármacos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA