Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sci Adv ; 10(14): eadl3406, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569030

RESUMO

Amyloid aggregation of α-synuclein (αSN) protein amplifies the pathogenesis of neurodegenerative diseases (NDs) such as Parkinson's disease (PD). Consequently, blocking aggregation or redirecting self-assembly to less toxic aggregates could be therapeutic. Here, we improve brain-specific nanocarriers using a hybrid of exosomes (Ex) from human umbilical cord mesenchymal stem cells (hUC MSCs) and nanoliposomes containing baicalein (Ex-NLP-Ba) and oleuropein (Ex-NLP-Ole). The hybrids contained both lipid membranes, Ex proteins, and baicalein or oleuropein. Fluorescence resonance energy transfer analysis confirmed their proper integration. The hybrids reduced the extent of αSN fibrillation and interfered with secondary nucleation and disaggregation. They not only reduced αSN pathogenicity but also enhanced drug internalization into cells, surpassing the efficacy of NLP alone, and also crossed the blood-brain barrier in a cellular model. We conclude that Ex can be successfully extracted and efficiently merged with NLPs while retaining its original properties, demonstrating great potential as a theranostic drug delivery vehicle against NDs like PD.


Assuntos
Exossomos , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Exossomos/metabolismo , Doença de Parkinson/patologia , Glucosídeos Iridoides
2.
Biol Methods Protoc ; 9(1): bpae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425334

RESUMO

We present four different protocols of varying complexity for the isolation of cell culture-derived extracellular vesicles (EVs)/exosome-enriched fractions with the objective of providing researchers with easily conducted methods that can be adapted for many different uses in various laboratory settings and locations. These protocols are primarily based on polymer precipitation, filtration and/or ultracentrifugation, as well as size-exclusion chromatography (SEC) and include: (i) polyethylene glycol and sodium chloride supplementation of the conditioned medium followed by low-speed centrifugation; (ii) ultracentrifugation of conditioned medium; (iii) filtration of conditioned media through a 100-kDa exclusion filter; and (iv) isolation using a standard commercial kit. These techniques can be followed by further purification by ultracentrifugation, sucrose density gradient centrifugation, or SEC if needed and the equipment is available. HEK293 and SH-SY5Y cell cultures were used to generate conditioned medium containing exosomes. This medium was then depleted of cells and debris, filtered through a 0.2-µM filter, and supplemented with protease and RNAse inhibitors prior to exosomal isolation. The purified EVs can be used immediately or stably stored at 4°C (up to a week for imaging or using intact EVS downstream) or at -80°C for extended periods and then used for biochemical study. Our aim is not to compare these methodologies but to present them with descriptors so that researchers can choose the "best method" for their work under their individual conditions.

3.
Sci Rep ; 14(1): 5171, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431711

RESUMO

Ethical animal use follows the 3R's: Replacement, Reduction and Refinement. Here, we present the use of simultaneous jugular vein and cisterna magna catheterization via a port system in rats for repeated fluid sampling for 14 consecutive days without loss of catheter patency. This technique allows repeated intra-animal sampling without anesthesia and, if used with pooling samples from a cohort of animals, replaces the need for terminal collections for sufficient sample volumes.


Assuntos
Anestesia , Cisterna Magna , Humanos , Ratos , Animais , Cateterismo/métodos , Manejo de Espécimes/métodos , Catéteres , Líquido Cefalorraquidiano
4.
Int J Biol Macromol ; 259(Pt 1): 128875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154719

RESUMO

The utilization of biocompatible drug delivery systems with extended drug release capabilities is highly advantageous in cancer therapy, as they can mitigate adverse effects. To establish such a biocompatible system with prolonged drug release behavior, researchers developed an innovative drug carrier. In this study, a sustainable approach was employed to synthesize a new zinc-based metal-organic framework (Zn-MOF) through the reaction between synthesized Schiff base ligands and zinc ions. Comprehensive analyses, including FT-IR, XRD, SEM, BET surface area, and TGA techniques, were employed to thoroughly characterize the frameworks. Following comprehensive characterization, curcumin (CUR) was loaded onto the Zn-MOF, resulting in CUR entrapment efficiency and loading capacity of 79.23 % and 26.11 %, respectively. In vitro evaluations of CUR release from CUR@MOF exhibited controlled release patterns, releasing 78.9 % and 50.0 % of CUR at pH 5.0 and pH 7.4, respectively. To mitigate initial burst release, a coating of the biopolymer sodium alginate (SA) was applied to CUR@Zn-MOF. In vitro CUR release tests indicated that SA/CUR@Zn-MOF outperformed pristine CUR@Zn-MOF. The release of CUR conformed to the Korsmeyer-Peppas model, displaying non-Fickian diffusion. Furthermore, an in vitro cytotoxicity study clearly demonstrated the potent anti-tumor activity of the synthesized CUR@Zn-MOF attributed to its controlled release of CUR. This led to the induction of apoptotic effects and cell death across HeLa, HEK293, and SH-SY5Y cell lines. These findings strongly suggest that the developed pH-sensitive carriers hold remarkable potential as targeted vehicles for drug delivery in cancer therapy.


Assuntos
Curcumina , Estruturas Metalorgânicas , Neuroblastoma , Humanos , Curcumina/química , Estruturas Metalorgânicas/química , Preparações de Ação Retardada , Alginatos , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Neuroblastoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Zinco , Liberação Controlada de Fármacos
5.
AMB Express ; 13(1): 29, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897423

RESUMO

High risk of acute morbidities and even mortality from expanding the antibiotics resistant infectious wounds force indefinite efforts for development of high performance wound-healing materials. Herein, we design a procedure to fabricate a hyaluronic acid (HA)-based hydrogel to conjugate curcumin (Gel-H.P.Cur). The highlight of this work is to provide a favorite condition for capturing curcumin while protecting its structure and intensifying its activities because of the synchronization with HA. Accordingly, HA as a major component of dermis with a critical role in establishing skin health, could fortify the wound healing property as well as antibacterial activity of the hydrogel. Gel-H.P.Cur showed antibacterial properties against Pseudomonas aeruginosa (P. aeruginosa), which were examined by bactericidal efficiency, disk diffusion, anti-biofilm, and pyocyanin production assays. The effects of Gel-H.P.Cur on the inhibition of quorum sensing (QS) regulatory genes that contribute to expanding bacteria in the injured place was also significant. In addition, Gel-H.P.Cur showed high potential to heal the cutaneous wounds on the mouse excisional wound model with repairing histopathological damages rapidly and without scar. Taken together, the results strongly support Gel-H.P.Cur as a multipotent biomaterial for medical applications regarding the treatment of chronic, infected, and dehiscent wounds.

6.
Int J Biol Macromol ; 229: 305-320, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36535359

RESUMO

The role of the blood-brain barrier (BBB) is to control trafficking of biomolecules and protect the brain. This function can be compromised by pathological conditions. Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates (αSN-AGs) such as oligomers and fibrils, which contribute to disease progression and severity. Here we study how αSN-AGs affect the BBB in in vitro co-culturing models consisting of human brain endothelial hCMEC/D3 cells (to overcome inter-species differences) alone and co-cultured with astrocytes and neurons/glial cells. When cultivated on their own, hCMEC/D3 cells were compromised by αSN-AGs, which decreased cellular viability, mitochondrial membrane potential, wound healing activity, TEER value, and enhanced permeability, as well as increased the levels of ROS and NO. Co-culturing of these cells with activated microglia also increased BBB impairment according to TEER and systemic immune cell transmigration assays. In contrast, hCMEC/D3 cells co-cultured with astrocytes or dopaminergic neurons or simultaneously treated with their conditioned media showed increased resistance against αSN-AGs. Our work demonstrates the complex relationship between members of the neurovascular unit (NVU) (perivascular astrocytes, neurons, microglia, and endothelial cells), αSN-AGs and BBB.


Assuntos
Barreira Hematoencefálica , alfa-Sinucleína , Humanos , Células Endoteliais/fisiologia , Células Cultivadas , Técnicas de Cocultura
7.
Front Pharmacol ; 13: 966760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249814

RESUMO

Despite extensive research, the molecular mechanisms underlying the toxicity of αSN in Parkinson's disease (PD) pathology are still poorly understood. To address this, we used a microarray dataset to identify genes that are induced and differentially expressed after exposure to toxic αSN aggregates, which we call exogenous αSN response (EASR) genes. Using systems biology approaches, we then determined, at multiple levels of analysis, how these EASR genes could be related to PD pathology. A key result was the identification of functional connections between EASR genes and previously identified PD-related genes by employing the proteins' interactions networks and 9 brain region-specific co-expression networks. In each brain region, co-expression modules of EASR genes were enriched for gene sets whose expression are altered by SARS-CoV-2 infection, leading to the hypothesis that EASR co-expression genes may explain the observed links between COVID-19 and PD. An examination of the expression pattern of EASR genes in different non-neurological healthy brain regions revealed that regions with lower mean expression of the upregulated EASR genes, such as substantia nigra, are more vulnerable to αSN aggregates and lose their neurological functions during PD progression. Gene Set Enrichment Analysis of healthy and PD samples from substantia nigra revealed that a specific co-expression network, "TNF-α signaling via NF-κB", is an upregulated pathway associated with the PD phenotype. Inhibitors of the "TNF-α signaling via NF-κB" pathway may, therefore, decrease the activity level of this pathway and thereby provide therapeutic benefits for PD patients. We virtually screened FDA-approved drugs against these upregulated genes (NR4A1, DUSP1, and FOS) using docking-based drug discovery and identified several promising drugs. Altogether, our study provides a better understanding of αSN toxicity mechanisms in PD and identifies potential therapeutic targets and small molecules for treatment of PD.

8.
Int J Biol Macromol ; 209(Pt A): 426-440, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398391

RESUMO

The dangerous self-assembled and infectious seeds of α-synuclein (αSN) play primary roles in Parkinson's disease. Accordingly, the inhibition of αSN fibrillation and elimination of toxic aggregates are the main therapeutic strategies. Skullcapflavone II (S.FII), a compound isolated from S. pinnatifida, has shown multiple neuroprotective features. Herein, we demonstrated that S.FII inhibited αSN aggregation with IC50 of 7.2 µM. It increased nucleation time and decreased fibril elongation rate and the species formed in the presence of S.FII were unable to act as seeds. Additionally, S.FII inhibited both secondary nucleation and seeding of αSN and disaggregated the mature preformed fibrils as well. The species formed in the presence of S.FII showed less toxicity. It also preserved neurite length and dopamine content of SH-SY5Y cells and attenuated the inflammatory responses in mixed glial cells. The Localized Surface Plasmon Resonance (LSPR) analysis indicated that S.FII interacts with αSN. Docking simulation studies on αSN fibrils revealed that S.FII could interact with the key residues of the salt bridges and glutamine ladder, which might lead to the destruction of fibril's structures. We also showed that S.FII passes through the blood-brain barrier in vitro and in vivo. Overall, these findings elucidate the neuroprotective roles of S.FII in reducing αSN pathogenicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Flavonoides/farmacologia , Humanos , alfa-Sinucleína/química
9.
J Membr Biol ; 254(1): 29-39, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427941

RESUMO

Thanks in large part to the seminal work of Steve White and his colleagues, we appreciate the "ordered complexity" of the lipid bilayer and how it impacts the incorporation of integral membrane proteins as well as more peripherally associated proteins. Steve's work also provides a vital foundation to tackle another challenge: cytotoxic oligomeric complexes which accumulate in various neurodegenerative diseases. These oligomers have a relatively fluid structure and interact with many different proteins in the cell, but their main target is thought to be the phospholipid membrane, either the plasma membrane or internal organelles such as the mitochondria. This fascinating encounter between two essentially fluid phases generates a more disordered membrane, and presumably promotes uncontrolled transport of small metal ions across the membrane barrier. Happily, this unwanted interaction may be suppressed by mobilizing the phospholipid bilayer into its own defense. Extruded nanolipoparticles (NLPs) consisting of DPPC lipids, cholesterol and PEG2000 are excellent vehicles to take up small "oligomer-bashing" hydrophobic molecules such as baicalein and transport them with increased half-life in the plasma and with markedly more efficient crossing of the blood-brain barrier. Thus the bilayer has a triple role in this account: a safe space for a reactive hydrophobic small molecule, a barrier to cross to deliver a drug payload and a target to protect against oligomer attacks. NLPs containing small hydrophobic molecules show great promise in combating neurodegenerative diseases in animal models and may serve as an example of the White approach: applying robust physical-chemical principles to deal with biological problems involving phospholipid membranes.


Assuntos
Bicamadas Lipídicas , Membrana Celular , Colesterol , Humanos , Doenças Neurodegenerativas , Fosfolipídeos
10.
Heliyon ; 6(8): e04737, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32913905

RESUMO

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders with no precise etiology. Multiple lines of evidence support that environmental factors, either neurotoxins or neuroinflammation, can induce Parkinsonism. In this study, we purified an active compound, neobaicalein (Skullcapflavone II), from the roots of Scutellaria pinnatifida (S. pinnatifida). Neobaicalein not only had protective impacts on rotenone-induced neurotoxicity but in glial cultures, it dampened the inflammatory response when stimulated with lipopolysaccharide (LPS). Neobaicalein had high antioxidant activity without any obvious toxicity. In addition, it could raise the cell viability, decrease early apoptosis, reduce the generation of reactive oxygen species (ROS), and keep the neurite's length normal in the treated SH-SY5Y cells. Pathway enrichment analysis (PEA) and target prediction provided insights into the PD related genes, protein-protein interaction (PPI) network, and the key proteins enriched in the signaling pathways. Furthermore, docking simulation (DS) on the proteins of the PD-PPI network revealed that neobaicalein might interact with the key proteins involved in PD pathology, including MAPK14, MAPK8, and CASP3. It also blocks the destructive processes, such as cell death, inflammation, and oxidative stress pathways. Our results demonstrate that neobaicalein alleviates pathological effects of factors related to PD, and may provide new insight into PD therapy.

11.
Int J Pharm ; 590: 119895, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32956821

RESUMO

Bevacizumab (Avastin®), an anti-vascular endothelial growth factor, is one of the most effective drugs widely used to inhibit ocular angiogenesis. Nanoliposomes were recruited to improve the accessibility of bevacizumab (BVZ) during treatment. To optimize drug entrapment efficiency (DEE %), the effect of some independent variables was evaluated utilizing response surface methodology. The optimized formulation containing BVZ (NLP-BVZ) was characterized, and its safety was assessed. Employingarising retinalpigment epithelial (ARPE) cells, the permeability of the nanoliposome was analyzed. Structural stability and integrity of NLP-BVZ were also estimated with different methods. Optimal condition for the maximum DEE (39.9%) was obtained with cholesterol/DPPC (1,2-Dipalimitoyl-Sn-glycero-3-phosphocholine) (%w/w) 13.64, BVZ/DPPC (%w/w) 83.78 and 9 freeze-thaw cycles. Neutral fabricated NLP-BVZ with an average size of 141.5 ±â€¯45.8 nm showed a smooth spherical structure and released the drug in a slow and sustained fashion. The formulation exhibited no obvious effect against human umbilical vein endothelial cells (HUVECs) and ARPEs. Additionally, the pattern of the circular dichroism (CD) and intrinsic fluorescence spectra confirmed the structural integrity of protein remained conserved after encapsulation. Taken together, the analysis indicated that the process of entrapment into nanoliposome meaningfully made the drug safer, more stable, and, therefore, appropriate for treating ocular disorders.


Assuntos
Preparações Farmacêuticas , Bevacizumab , Células Endoteliais da Veia Umbilical Humana , Humanos
12.
Int J Biol Macromol ; 155: 543-550, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240735

RESUMO

The α-synuclein (αSN) amyloid fibrillization process is known to be a crucial phenomenon associated with neuronal loss in various neurodegenerative diseases, most famously Parkinson's disease. The process involves different aggregated species and ultimately leads to formation of ß-sheet rich fibrillar structures. Despite the essential role of αSN aggregation in the pathoetiology of various neurological disorders, the characteristics of various assemblies are not fully understood. Here, we established a fluorescence-based model for studying the end-parts of αSN to decipher the structural aspects of aggregates during the fibrillization. Our model proved highly sensitive to the events at the early stage of the fibrillization process, which are hardly detectable with routine techniques. Combining fluorescent and PAGE analysis, we found different oligomeric aggregates in the nucleation phase of fibrillization with different sensitivity to SDS and different structures based on αSN termini. Moreover, we found that these oligomers are highly dynamic: after reaching peak levels during fibrillization, they decline and eventually disappear, suggesting their transformation into other αSN aggregated species. These findings shed light on the structural features of various αSN aggregates and their dynamics in synucleinopathies.


Assuntos
Amiloide/química , Proteínas Mutantes/química , Mutação , alfa-Sinucleína/química , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Heliyon ; 6(3): e03494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258450

RESUMO

Hyaluronic acid (HA), as a safe biomaterial with minimal immunogenicity, is being employed in a broad range of medical applications. Since unmodified HA has a high potential for biodegradation in the physiological condition, herein, an HA-based cross-linked hydrogel was formulated using polydimethylsiloxane-diglycidyl ether terminated (PDMS-DG) via epoxide-OH reaction. The formation of HA-PDMS hydrogel was confirmed using FTIR, NMR, and FESEM. Temperature demonstrated a critical role in the physicochemical properties of the final products. Gel-37, which formed at 37 °C, had a higher modification degree (MD) and more stability against hyaluronidase and oxidative stress than the hydrogel formulated at 25 °C (Gel-25). In addition, the swelling ratio, roughness, and porous network topology of Gel-25 and Gel-37 were different. The rheology measurement indicated that HA-PDMS hydrogel had a stable viscoelastic character. The hydrogel was also biocompatible, non-cytotoxic, and considerably stable during 7-months storage. Overall, various determined parameters confirmed that HA-PDMS hydrogel is worth using in different medical applications. Keywords: Hyaluronic acid; Polydimethylsiloxane-diglycidyl ether terminated; Hydrogels; Long-term stability; Viscoelastic behavior; Biocompatibility.

14.
Iran J Biotechnol ; 17(2): e2008, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31457055

RESUMO

BACKGROUND: Eptifibatide (Integrilin®) is a hepta-peptide drug which specifically prevents the aggregation of activated platelets. The peptide drugs are encapsulated into nanolipisomes in order to decreasing their side effects and improving their half-life and bioavailability. OBJECTIVES: In this study, the in vitro cytotoxicity and hemocompatibility of RGD-modified nano-liposomes (RGD-MNL) encapsulated a highly potent antiplatelet drug (eptifibatide) was investigated. MATERIAL AND METHODS: RGD-MNL encapsulated eptifibatide was prepared using lipid film hydration and freeze/thawing method. The morphology and size distribution (about 90 nm) of RGD-MNL were characterized using transmission electron microscopy (TEM). The in-vitro cytotoxicity of nano-liposomes was examined using the MTT, LDH release and reactive oxygen species (ROS) generation assays. The effect of RGD-MNL on red blood cells (RBC) was investigated using hemolysis and LDH release assays. RESULTS: The results revealed that RGD-MNL had no significant cytotoxic effect on HeLa and HUVEC cell lines, and also no ROS generation increase in the cells. In addition, the adverse effect of RGD-MNL on LDH release and membrane integrity of RBC was not observed. CONCLUSIONS: In conclusion, the recommended RGD-MNL formulations have not any significant cytotoxicity on normal cells or RBC and have potential for protecting and enhancing the activity of antiplatelet drugs.

15.
Int J Biol Macromol ; 137: 528-536, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31271798

RESUMO

Emergence of multidrug-resistant bacteria is a major global concern. According to WHO, methicillin-resistant Staphylococcus aureus (MRSA) is a threatening pathogen resistant to a wide spectrum of antibiotics. Herein, to overcome drug resistance in MRSA, we successfully integrated traditional antibacterial methods but with a novel trick that included use of hen egg-white lysozyme's special aggregates generated by fibrillization. The minimum inhibitory concentration of oxacillin (Ox) for MRSA declined from 600 µM to <20 µM when using aggregates. Scanning and transition electron micrographs showed completely disrupted cells when treated with aggregated protein/Ox (20 µM). The assisting role of aggregates to induce antibiotic hypersensitivity was continuous and stable, but sub-inhibitory antibiotic concentration (20 µM) was required again after 8 h. Investigations regarding mechanism of antibiotic hypersensitivity revealed that aggregates were oligomers but not mature fibrils. Furthermore, reactive oxygen species levels rose significantly after treating bacteria with aggregated protein/Ox. Study of resistance mechanisms indicated that in response to wall structure alterations, mecA expression dropped significantly in the presence of aggregated protein/Ox (20 µM) relative to Ox (20 µM). This observation can be a breakthrough in finding alternatives where antibiotic dosage can be significantly reduced, thereby preventing emergence of new multidrug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Muramidase/química , Muramidase/farmacologia , Oxacilina/farmacologia , Agregados Proteicos , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
16.
J Neurochem ; 150(5): 535-565, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31004503

RESUMO

Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".


Assuntos
Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Autofagia , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Técnicas In Vitro , Corpos de Lewy/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Estresse Oxidativo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/prevenção & controle , Proteólise , Transmissão Sináptica/fisiologia , Sinucleinopatias/genética , Sinucleinopatias/patologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/química , alfa-Sinucleína/genética
17.
Front Plant Sci ; 10: 148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815009

RESUMO

The ability of proteins to aggregate to form well-organized ß-sheet rich amyloid fibrils is increasingly viewed as a general if regrettable property of the polypeptide chain. Aggregation leads to diseases such as amyloidosis and neurodegeneration in humans and various mammalian species but is also found in a functional variety in both animals and microbes. However, there are to our knowledge no reports of amyloid formation in plants. Plants are also the source of a large number of aggregation-inhibiting compounds. We reasoned that the two phenomena could be connected and that one of (many) preconditions for plant longevity is the ability to suppress unwanted protein aggregation. In support of this, we show that while protein extracts from the sugar maple tree Acer saccharum fibrillate readily on their own, this process is efficiently abolished by addition of small molecule extracts from the same plant. Further analysis of 44 plants showed a correlation between plant longevity and ability to inhibit protein aggregation. Extracts from the best performing plant, the sugar maple, were subjected to chromatographic fractionation, leading to the identification of a large number of compounds, many of which were shown to inhibit aggregation in vitro. One cautious interpretation is that it may have been advantageous for plants to maintain an efficient collection of aggregation-inhibiting metabolites as long as they do not impair metabolite function. From a practical perspective, our results indicate that long-lived plants may be particularly appropriate sources of new anti-aggregation compounds with therapeutic potential.

18.
Neurosci Lett ; 701: 38-47, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30776494

RESUMO

BACKGROUND: Alpha-synuclein (αSN) is an abundant presynaptic brain protein that its aggregated species believed to play pivotal roles in the development of neurodegenerative diseases, especially Parkinson's disease (PD). In this study, we compared the response of primary neuronal cells with a well-known cell line model, PC12, against the toxic aggregates of αSN. METHODS: Primary hippocampal neurons (PHNs) were isolated from 17 to 18 days old rat embryos. Fibrillization was induced in recombinant αSN and monitored by standard methods. The toxicity of different aggregates of αSN on the treated cells was then studied. Furthermore, changes in the intracellular reactive oxygen species (ROS) and Ca2+ levels were also compared in two kinds of treated cells. We also studied the gene expression profile of certain Ca2+ channels and carriers using the GEO2 database. RESULTS: The viability rate was significantly lower in PC12 versus PHNs, in response to αSN. This is while the intracellular ROS and Ca2+ levels were significantly increased in both cell types. Analysis of microarray data indicated that some factors involved in Ca2+ hemostasis may face significant changes in the PD condition. CONCLUSION: By putting these data together, it is clear that PHN is more resistant than PC12 toward αSN cytotoxicity even in the presence of rising cytoplasmic ROS and Ca2+ levels. Exploring the supporting mechanisms which PHN uses to be more resistant to αSN cytotoxicity can help to open a roadmap toward therapeutic plans in PD and other synucleinopathy disorders.


Assuntos
Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12/efeitos dos fármacos , alfa-Sinucleína/toxicidade , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doença de Parkinson , Cultura Primária de Células , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
J Biol Chem ; 294(11): 4215-4232, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30655291

RESUMO

Aggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree (Olea europaea L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein. Here, using αSN aggregation, fibrillation, size-exclusion chromatography-multiangle light scattering (SEC-MALS)-based assays, and toxicity assays, we systematically screened the fruit extracts of 15 different olive varieties to identify compounds that can inhibit αSN aggregation and oligomer toxicity and also have antioxidant activity. Polyphenol composition differed markedly among varieties. The variety with the most effective antioxidant and aggregation activities, Koroneiki, combined strong inhibition of αSN fibril nucleation and elongation with strong disaggregation activity on preformed fibrils and prevented the formation of toxic αSN oligomers. Fractionation of the Koroneiki extract identified oleuropein aglycone, hydroxyl oleuropein aglycone, and oleuropein as key compounds responsible for the differences in inhibition across the extracts. These phenolic compounds inhibited αSN amyloidogenesis by directing αSN monomers into small αSN oligomers with lower toxicity, thereby suppressing the subsequent fibril growth phase. Our results highlight the molecular consequences of differences in the level of effective phenolic compounds in different olive varieties, insights that have implications for long-term human health.


Assuntos
Frutas/química , Iridoides/farmacologia , Olea/química , alfa-Sinucleína/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Gel , Relação Dose-Resposta a Droga , Humanos , Glucosídeos Iridoides , Iridoides/química , Iridoides/isolamento & purificação , Luz , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
20.
Nanoscale ; 10(19): 9174-9185, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29725687

RESUMO

The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.


Assuntos
Lipossomos/química , Nanopartículas/química , Neurônios/efeitos dos fármacos , Doença de Parkinson/terapia , alfa-Sinucleína/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Cálcio/metabolismo , Colesterol/química , Humanos , Células PC12 , Polietilenoglicóis/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA