Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400483, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079938

RESUMO

Steroid dimers of natural and synthetic origin possess an unusual and complex molecular architecture that may lead to the realization of peculiar effects in biological systems, in particular in different cancer cell lines. In the present work, diastereoselective ring-opening of mono- and polyoxiranes, containing a cyclooctane core, by azide-anion was performed to yield a series of azidoalcohols with different types of symmetry. The products were involved in copper-catalyzed azyde-alkyne cycloaddition (CuAAC) reaction with ethinylestradiol and ethinyltestosterone, and the resulting steroids and steroid dimers with triazole linkers were screened for their antiproliferative activity via (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide) assay. All the compounds revealed cytotoxicity toward several cancer cell lines. The effect of the most potent compound, containing two estradiol moieties, on the microtubules (MT) dynamics was investigated by immunofluorescent microscopy. The disruption of the majority of interphase cell cytoplasmic MT and mitotic event disturbances in the presence of the studied compound were observed. The latter effect caused the appearance of numerous multinucleated cells.

2.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831508

RESUMO

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Assuntos
Filamentos Intermediários , Vimentina , Vimentina/metabolismo , Vimentina/química , Humanos , Filamentos Intermediários/metabolismo , Animais , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Filamentos Intermediários/química
3.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895072

RESUMO

This review summarizes information about the specific features that are characteristic of the centrosome and its relationship with the cell function of highly specialized cells, such as endotheliocytes. It is based on data from other researchers and our own long-term experience. The participation of the centrosome in the functional activity of these cells, including its involvement in the performance of the main barrier function of the endothelium, is discussed. According to modern concepts, the centrosome is a multifunctional complex and an integral element of a living cell; the functions of which are not limited only to the ability to polymerize microtubules. The location of the centrosome near the center of the interphase cell, the concentration of various regulatory proteins in it, the organization of the centrosome radial system of microtubules through which intracellular transport is carried out by motor proteins and the involvement of the centrosome in the process of the perception of the external signals and their transmission make this cellular structure a universal regulatory and distribution center, controlling the entire dynamic morphology of an animal cell. Drawing from modern data on the tissue-specific features of the centrosome's structure, we discuss the direct involvement of the centrosome in the performance of functions by specialized cells.


Assuntos
Centrossomo , Microtúbulos , Animais , Centrossomo/metabolismo , Microtúbulos/metabolismo , Células Endoteliais/metabolismo , Dineínas/metabolismo , Endotélio/metabolismo
4.
Biomedicines ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551950

RESUMO

Actin cytoskeleton is an essential component of living cells and plays a decisive role in many cellular processes. In mammals, ß- and γ-actin are cytoplasmic actin isoforms in non-muscle cells. Despite minor differences in the amino acid sequence, ß- and γ-actin localize in different cell structures and perform different functions. While cytoplasmic ß-actin is involved in many intracellular processes including cell contraction, γ-actin is responsible for cell mobility and promotes tumor transformation. Numerous studies demonstrate that ß- and γ-actin are spatially separated in the cytoplasm of fibroblasts and epithelial cells; this separation is functionally determined. The spatial location of ß/γ-actin in endothelial cells is still a subject for discussion. Using super-resolution microscopy, we investigated the ß/γ-actin colocalization in endotheliocytes and showed that the ß/γ-actin colocalization degree varies widely between different parts of the marginal regions and near the cell nucleus. In the basal cytoplasm, ß-actin predominates, while the ratio of isoforms evens out as it moves to the apical cytoplasm. Thus, our colocalization analysis suggests that ß- and γ-actin are segregated in the endotheliocyte cytoplasm. The segregation is greatly enhanced during cell lamella activation in the nocodazole-induced endothelial barrier dysfunction, reflecting a different functional role of cytoplasmic actin isoforms in endothelial cells.

5.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555175

RESUMO

Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Proteína Huntingtina/genética
6.
Biomedicines ; 10(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35453578

RESUMO

The endothelium plays an important role in the transcytosis of lipoproteins. According to one of the theories, endothelial injury is a triggering factor for the development of atherosclerosis, and intracellular structures, including components of the endotheliocyte cytoskeleton (microtubules, actin, and intermediate filaments), are involved in its development. In contrast to the proteins of tubulin-based microtubules and actin microfilaments, intermediate filaments are comprised of various tissue-specific protein members. Vimentin, the main protein of endothelial intermediate filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments, commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and migration are carried out, as well as control over several endotheliocyte functions. Moreover, the soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement of vimentin in the development and course of atherosclerosis has been demonstrated. Here we discuss current concepts of the participation of vimentin filaments in the vital activity and functioning of endothelial cells, as well as the role of vimentin in the development of inflammatory processes and atherosclerosis.

7.
J Vis Exp ; (179)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35068471

RESUMO

Transfection with a fluorescently labeled marker protein of interest in combination with time-lapse video microscopy is a classic method of studying the dynamic properties of the cytoskeleton. This protocol offers a technique for human primary fibroblast transfection, which can be difficult because of the specifics of primary cell cultivation conditions. Additionally, cytoskeleton dynamic property maintenance requires a low level of transfection to obtain a good signal-to-noise ratio without causing microtubule stabilization. It is important to take measures to protect the cells from light-induced stress and fluorescent dye fading. In the course of our work, we tested different transfection methods and protocols as well as different vectors to select the best combination of conditions suitable for human primary fibroblast studies. We analyzed the resulting time-lapse videos and calculated microtubule dynamics using ImageJ. The dynamics of microtubules' plus-ends in the different cell parts are not similar, so we divided the analysis into subgroups - the centrosome region, the lamella, and the tail of fibroblasts. Notably, this protocol can be used for in vitro analysis of cytoskeleton dynamics in patient samples, enabling the next step towards understanding the dynamics of the various disease development.


Assuntos
Doença de Huntington , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Fibroblastos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
8.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614047

RESUMO

Neurodegenerative diseases have acquired the status of one of the leading causes of death in developed countries, which requires creating new model systems capable of accurately reproducing the mechanisms underlying these pathologies. Here we analyzed modern model systems and their contribution to the solution of unexplored manifestations of neuropathological processes. Each model has unique properties that make it the optimal tool for modeling certain aspects of neurodegenerative disorders. We concluded that to optimize research, it is necessary to combine models into complexes that include organisms and artificial systems of different organizational levels. Such complexes can be organized in two ways. The first method can be described as "step by step", where each model for studying a certain characteristic is a separate step that allows using the information obtained in the modeling process for the gradual study of increasingly complex processes in subsequent models. The second way is a 'network' approach. Studies are carried out with several types of models simultaneously, and experiments with each specific type are adjusted in conformity with the data obtained from other models. In our opinion, the 'network' approach to combining individual model systems seems more promising for fundamental biology as well as diagnostics and therapy.


Assuntos
Doenças Neurodegenerativas , Humanos , Modelos Biológicos
9.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360602

RESUMO

The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle ß-cytoplasmic and γ-cytoplasmic actins (ß-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the ß/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Células Endoteliais/fisiologia , Animais , Células Endoteliais/citologia , Humanos
10.
Cells ; 9(6)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580314

RESUMO

Huntington's disease is a severe and currently incurable neurodegenerative disease. An autosomal dominant mutation in the Huntingtin gene (HTT) causes an increase in the polyglutamine fragment length at the protein N-terminus. The consequence of the mutation is the death of neurons, mostly striatal neurons, leading to the occurrence of a complex of motor, cognitive and emotional-volitional personality sphere disorders in carriers. Despite intensive studies, the functions of both mutant and wild-type huntingtin remain poorly understood. Surprisingly, there is the selective effect of the mutant form of HTT even on nervous tissue, whereas the protein is expressed ubiquitously. Huntingtin plays a role in cell physiology and affects cell transport, endocytosis, protein degradation and other cellular and molecular processes. Our experimental data mining let us conclude that a significant part of the Huntingtin-involved cellular processes is mediated by microtubules and other cytoskeletal cell structures. The review attempts to look at unresolved issues in the study of the huntingtin and its mutant form, including their functions affecting microtubules and other components of the cell cytoskeleton.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Microtúbulos/metabolismo , Animais , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia
11.
Mol Cancer Res ; 18(7): 1074-1087, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32269073

RESUMO

Antimicrotubule vinca alkaloids are widely used in the clinic but their toxicity is often dose limiting. Strategies that enhance their effectiveness at lower doses are needed. We show that combining vinca alkaloids with compounds that target a specific population of actin filaments containing the cancer-associated tropomyosin Tpm3.1 result in synergy against a broad range of tumor cell types. We discovered that low concentrations of vincristine alone induce supernumerary microtubule asters that form transient multi-polar spindles in early mitosis. Over time these asters can be reconstructed into functional bipolar spindles resulting in cell division and survival. These microtubule asters are organized by the nuclear mitotic apparatus protein (NuMA)-dynein-dynactin complex without involvement of centrosomes. However, anti-Tpm3.1 compounds at nontoxic concentrations inhibit this rescue mechanism resulting in delayed onset of anaphase, formation of multi-polar spindles, and apoptosis during mitosis. These findings indicate that drug targeting actin filaments containing Tpm3.1 potentiates the anticancer activity of low-dose vincristine treatment. IMPLICATIONS: Simultaneously inhibiting Tpm3.1-containing actin filaments and microtubules is a promising strategy to potentiate the anticancer activity of low-dose vincristine.


Assuntos
Citoesqueleto de Actina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/administração & dosagem , Tropomiosina/metabolismo , Vincristina/administração & dosagem , Células A549 , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Camundongos , Piperazinas/farmacologia , Tropomiosina/antagonistas & inibidores , Vincristina/farmacologia
12.
Acta Biomater ; 104: 176-187, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945505

RESUMO

Recently neutrophil-based nanoparticles (NPs) drug delivery systems have gained considerable attention in cancer therapy. Numerous studies have been conducted to identify optimal NPs parameters for passive tumor targeting, while there is a fundamental dearth of knowledge about the factors governing cell-mediated delivery. Here, by using intravital microscopy and magnetic resonance imaging, we describe accumulation dynamics of 140 nm magnetic cubes and clusters in murine breast cancer (4T1) and colon cancer (CT26) models. Notwithstanding rapid clearance from the blood flow, NPs readily accumulated in tumors at later time points. Both NPs types were captured mostly by intravascular neutrophils immediately after injection, and transmigration of NPs-bound neutrophils through the vessel wall was first shown in real-time. A dramatic drop in NPs accumulation upon Ly6G and Gr1 depletion further confirmed the role of neutrophils as a biocarrier for targeting tumors. Of note, for shorter circulating NPs, a cell-dependent delivery route was more impactful, while the accumulation of longer circulating counterpart was less compromised by neutrophil depletion. Neutrophil-mediated transport was also shown to depend on tumor type, with more efficiency noted in neutrophil-rich tumors. Revealing NPs characteristics and host factors influencing the neutrophil-based tumor targeting will help to rationally design drug delivery systems for improved cancer treatment. STATEMENT OF SIGNIFICANCE: Utilizing host cells as trojan horses for delivery nanodrugs to tumor site is a promising approach for cancer therapy. However, it is not clear yet how nanoparticles characteristics and tumor properties affect the efficiency of cell-based nanoparticles transport. Here, we compare neutrophil-based delivery of different-shaped magnetic nanoparticles (cubes and clusters) in two tumor models. The results suggest that neutrophil-mediated route is more impactful for rapidly cleared cubes, than for longer circulating clusters. The efficiency of cell-based accumulation also correlated with the level of neutrophils recruitment to different tumor types. These finding are important for rationale design of nanocarriers and predicting the efficiency of neutrophil-mediated drug delivery between patients and tumor types.


Assuntos
Nanopartículas de Magnetita/química , Neoplasias/metabolismo , Neutrófilos/metabolismo , Animais , Transporte Biológico , Contagem de Células , Linhagem Celular Tumoral , Feminino , Humanos , Microscopia Intravital , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Neoplasias/irrigação sanguínea , Neoplasias/patologia
13.
J Control Release ; 307: 368-378, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247280

RESUMO

Developing nanocarriers that accumulate in targeted organs and are harmlessly eliminated still remains a big challenge. Nanoparticles (NP) biodistribution is governed by their size, composition, surface charge and coverage. The current thinking in bionanotechnology is that renal clearance is limited by glomerular basement membrane pore size (≈6 nm), although there is a growing evidence that NP exceeding the threshold can also be excreted with urine. Here we compare biodistribution of PEGylated 140 nm iron oxide cubes and clusters with a special focus on renal accumulation and excretion. Atomic emission spectroscopy, fluorescent microscopy and magnetic resonance imaging revealed rapid and transient accumulation of magnetic NP in kidney. Using intravital microscopy we tracked in real time NP translocation from peritubular capillaries to basal compartment of tubular cells and subsequent excretion to the lumen within 60 min after systemic administration. Transmission electron microscopy revealed persistence of intact full-sized NP in urine 2 h post injection. The results suggest that translocation through peritubular endothelium to tubular epithelial cells is an alternative mechanism of renal clearance enabling excretion of NP above glomerular cut-off size.


Assuntos
Portadores de Fármacos/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Rim/metabolismo , Nanopartículas/administração & dosagem , Animais , Células Cultivadas , Portadores de Fármacos/farmacocinética , Células Epiteliais/metabolismo , Feminino , Óxido Ferroso-Férrico/farmacocinética , Humanos , Microscopia Intravital , Rim/diagnóstico por imagem , Rim/ultraestrutura , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/ultraestrutura , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética
14.
Cells ; 8(2)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791486

RESUMO

During spermiogenesis, the proximal centriole forms a special microtubular structure: the centriolar adjunct. This structure appears at the spermatid stage, which is characterized by a condensed chromatin nucleus. We showed that the centriolar adjunct disappears completely in mature porcine spermatozoa. In humans, the centriolar adjunct remnants are present in a fraction of mature spermatids. For the first time, the structure of the centriolar adjunct in the cell, and its consequent impact on fertility, were examined. Ultrastructural analysis using transmission electron microscopy was performed on near 2000 spermatozoa per person, in two patients with idiopathic male sterility (IMS) and five healthy fertile donors. We measured the average length of the "proximal centriole + centriolar adjunct" complex in sections, where it had parallel orientation in the section plane, and found that it was significantly longer in the spermatozoa of IMS patients than in the spermatozoa of healthy donors. This difference was independent of chromatin condensation deficiency, which was also observed in the spermatozoa of IMS patients. We suggest that zygote arrest may be related to an incompletely disassembled centriolar adjunct in a mature spermatozoon. Therefore, centriolar adjunct length can be potentially used as a complementary criterion for the immaturity of spermatozoa in the diagnostics of IMS patients.


Assuntos
Centríolos/metabolismo , Fertilidade/fisiologia , Espermatogênese/fisiologia , Adulto , Animais , Centríolos/ultraestrutura , Cromatina/metabolismo , Humanos , Infertilidade Masculina/patologia , Masculino , Espermátides/metabolismo , Espermátides/ultraestrutura , Suínos , Doadores de Tecidos
15.
J Nanobiotechnology ; 17(1): 27, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728022

RESUMO

BACKGROUND: Theranostics application of superparamagnetic nanoparticles based on magnetite and maghemite is impeded by their toxicity. The use of additional protective shells significantly reduced the magnetic properties of the nanoparticles. Therefore, iron carbides and pure iron nanoparticles coated with multiple layers of onion-like carbon sheath seem to be optimal for biomedicine. Fluorescent markers associated with magnetic nanoparticles provide reliable means for their multimodal visualization. Here, biocompatibility of iron nanoparticles coated with graphite-like shell and labeled with Alexa 647 fluorescent marker has been investigated. METHODS: Iron core nanoparticles with intact carbon shells were purified by magnetoseparation after hydrochloric acid treatment. The structure of the NPs (nanoparticles) was examined with a high resolution electron microscopy. The surface of the NPs was alkylcarboxylated and further aminated for covalent linking with Alexa Fluor 647 fluorochrome to produce modified fluorescent magnetic nanoparticles (MFMNPs). Live fluorescent imaging and correlative light-electron microscopy were used to study the NPs intracellular distribution and the effects of constant magnetic field on internalized NPs in the cell culture were analyzed. Cell viability was assayed by measuring a proliferative pool with Click-IT labeling. RESULTS: The microstructure and magnetic properties of superparamagnetic Fe@C core-shell NPs as well as their endocytosis by living tumor cells, and behavior inside the cells in constant magnetic field (150 mT) were studied. Correlative light-electron microscopy demonstrated that NPs retained their microstructure after internalization by the living cells. Application of constant magnetic field caused orientation of internalized NPs along power lines thus demonstrating their magnetocontrollability. Carbon onion-like shells make these NPs biocompatible and enable long-term observation with confocal microscope. It was found that iron core of NPs shows no toxic effect on the cell physiology, does not inhibit the cell proliferation and also does not induce apoptosis. CONCLUSIONS: Non-toxic, biologically compatible superparamagnetic fluorescent MFMNPs can be further used for biological application such as delivery of biologically active compounds both inside the cell and inside the whole organism, magnetic separation, and magnetic resonance imaging (MRI) diagnostics.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes/química , Nanopartículas de Magnetita/química , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Endocitose , Óxido Ferroso-Férrico/química , Grafite/química , Humanos , Luz , Campos Magnéticos , Nanopartículas de Magnetita/toxicidade , Imagem Óptica/métodos , Tamanho da Partícula , Propriedades de Superfície
16.
Open Biol ; 8(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30045886

RESUMO

This review summarizes data that assign morphological, biochemical and functional characteristics of two types of structures that are associated with centrioles: distal appendages and subdistal appendages. The description of centriole subdistal appendages is often a matter of confusion, both due to the numerous names used to describe these structures and because of their variability among species and cell types. Thus, we have summarized our current knowledge in this review. We conclude that distal appendages and subdistal appendages are fundamentally different in composition and function in the cell. While in centrioles there are always nine distal appendages, the number of subdistal appendages can vary depending on the type of cells and their functional state.


Assuntos
Centríolos/ultraestrutura , Animais , Ciclo Celular , Centríolos/metabolismo , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares
17.
Bioorg Med Chem Lett ; 28(3): 382-387, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269214

RESUMO

Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug - paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Galactose/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Paclitaxel/síntese química , Paclitaxel/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
18.
Mol Cancer Ther ; 16(8): 1555-1565, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28522589

RESUMO

Actin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.1, using a first-in-class compound, TR100. Here, we screened over 200 other antitropomyosin analogues for anticancer and on-target activity using a series of in vitro cell-based and biochemical assays. ATM-3507 was selected as the new lead based on its ability to disable Tpm3.1-containing filaments, its cytotoxicity potency, and more favorable drug-like characteristics. We tested ATM-3507 and TR100 alone and in combination with antimicrotubule agents against neuroblastoma models in vitro and in vivo Both ATM-3507 and TR100 showed a high degree of synergy in vitro with vinca alkaloid and taxane antimicrotubule agents. In vivo, combination-treated animals bearing human neuroblastoma xenografts treated with antitropomyosin combined with vincristine showed minimal weight loss, a significant and profound regression of tumor growth and improved survival compared with control and either drug alone. Antitropomyosin combined with vincristine resulted in G2-M phase arrest, disruption of mitotic spindle formation, and cellular apoptosis. Our data suggest that small molecules targeting the actin cytoskeleton via tropomyosin sensitize cancer cells to antimicrotubule agents and are tolerated together in vivo This combination warrants further study. Mol Cancer Ther; 16(8); 1555-65. ©2017 AACR.


Assuntos
Antineoplásicos/uso terapêutico , Microtúbulos/metabolismo , Neoplasias/tratamento farmacológico , Tropomiosina/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Fase G2/efeitos dos fármacos , Humanos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Neoplasias/patologia , Tropomiosina/metabolismo , Vincristina/farmacologia
19.
J Nanobiotechnology ; 14(1): 67, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576904

RESUMO

BACKGROUND: A new type of superparamagnetic nanoparticles with chemical formula Fe7C3@C (MNPs) showed higher value of magnetization compared to traditionally used iron oxide-based nanoparticles as was shown in our previous studies. The in vitro biocompatibility tests demonstrated that the MNPs display high efficiency of cellular uptake and do not affect cyto-physiological parameters of cultured cells. These MNPs display effective magnetocontrollability in homogeneous liquids but their behavior in cytoplasm of living cells under the effect of magnetic field was not carefully analyzed yet. RESULTS: In this work we investigated the magnetocontrollability of MNPs interacting with living cells in permanent magnetic field. It has been shown that cells were capable of capturing MNPs by upper part of the cell membrane, and from the surface of the cultivation substrate during motion process. Immunofluorescence studies using intracellular endosomal membrane marker showed that MNP agglomerates can be either located in endosomes or lying free in the cytoplasm. When attached cells were exposed to a magnetic field up to 0.15 T, the MNPs acquired magnetic moment and the displacement of incorporated MNP agglomerates in the direction of the magnet was observed. Weakly attached or non-attached cells, such as cells in mitosis or after cytoskeleton damaging treatments moved towards the magnet. During long time cultivation of cells with MNPs in a magnetic field gradual clearing of cells from MNPs was observed. It was the result of removing MNPs from the surface of the cell agglomerates discarded in the process of exocytosis. CONCLUSIONS: Our data allow us to conclude for the first time that the magnetic properties of the MNPs are sufficient for successful manipulation with MNP agglomerates both at the intracellular level, and within the whole cell. The structure of the outer shells of the MNPs allows firmly associate different types of biological molecules with them. This creates prospects for the use of such complexes for targeted delivery and selective removal of selected biological molecules from living cells.


Assuntos
Técnicas Citológicas/métodos , Nanopartículas de Magnetita/química , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose/fisiologia , Humanos , Espaço Intracelular/química , Magnetismo , Microscopia Eletrônica de Transmissão
20.
Oncotarget ; 7(45): 72699-72715, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27683037

RESUMO

Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of ß- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not ß-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of ß-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Actinas/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Multimerização Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA