Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
NPJ Vaccines ; 7(1): 105, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056015

RESUMO

At the forefront of biopharmaceutical industry, the messenger RNA (mRNA) technology offers a flexible and scalable platform to address the urgent need for world-wide immunization in pandemic situations. This strategic powerful platform has recently been used to immunize millions of people proving both of safety and highest level of clinical efficacy against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we provide preclinical report of COReNAPCIN®; a vaccine candidate against SARS-CoV-2 infection. COReNAPCIN® is a nucleoside modified mRNA-based vaccine formulated in lipid nanoparticles (LNPs) for encoding the full-length prefusion stabilized SARS-CoV-2 spike glycoprotein on the cell surface. Vaccination of C57BL/6 and BALB/c mice and rhesus macaque with COReNAPCIN® induced strong humoral responses with high titers of virus-binding and neutralizing antibodies. Upon vaccination, a robust SARS-CoV-2 specific cellular immunity was also observed in both mice and non-human primate models. Additionally, vaccination protected rhesus macaques from symptomatic SARS-CoV-2 infection and pathological damage to the lung upon challenging the animals with high viral loads of up to 2 × 108 live viral particles. Overall, our data provide supporting evidence for COReNAPCIN® as a potent vaccine candidate against SARS-CoV-2 infection for clinical studies.

2.
J Transl Med ; 19(1): 482, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838059

RESUMO

BACKGROUND: CAR T-cell therapy has been recently unveiled as one of the most promising cancer therapies in hematological malignancies. However, solid tumors mount a profound line of defense to escape immunosurveillance by CAR T-cells. Among them, cytokines with an inhibitory impact on the immune system such as IL-10 and TGFß are of great importance: TGFß is a pleiotropic cytokine, which potently suppresses the immune system and is secreted by a couple of TME resident and tumor cells. METHODS: In this study, we hypothesized that knocking out the TGFß receptor II gene, could improve CAR T-cell functions in vitro and in vivo. Hereby, we used the CRISPR/Cas9 system, to knockout the TGFßRII gene in T-cells and could monitor the efficient gene knock out by genome analysis techniques. Next, Mesothelin or Claudin 6 specific CAR constructs were overexpressed via IVT-RNA electroporation or retroviral transduction and the poly-functionality of these TGFßRII KO CAR T-cells in terms of proliferation, cytokine secretion and cytotoxicity were assessed and compared with parental CAR T-cells. RESULTS: Our experiments demonstrated that TGFßRII KO CAR T-cells fully retained their capabilities in killing tumor antigen positive target cells and more intriguingly, could resist the anti-proliferative effect of exogenous TGFß in vitro outperforming wild type CAR T-cells. Noteworthy, no antigen or growth factor-independent proliferation of these TGFßRII KO CAR T-cells has been recorded. TGFßRII KO CAR T-cells also resisted the suppressive effect of induced regulatory T-cells in vitro to a larger extent. Repetitive antigen stimulation demonstrated that these TGFßRII KO CAR T-cells will experience less activation induced exhaustion in comparison to the WT counterpart. CONCLUSION: The TGFßRII KO approach may become an indispensable tool in immunotherapy of solid tumors, as it may surmount one of the key negative regulatory signaling pathways in T-cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Sistemas CRISPR-Cas/genética , Humanos , Imunoterapia Adotiva , Mesotelina , Neoplasias/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
3.
Mol Immunol ; 139: 1-9, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450537

RESUMO

T-cell immunoglobulin mucin 3 (Tim3) is an immune checkpoint receptor that plays a central role in chimeric antigen receptor (CAR) T cell exhaustion within the tumor microenvironment. This study was aimed to evaluate the effects of targeted-knockdown of Tim3 on the antitumor function of anti-mesothelin (MSLN)-CAR T cells. To knockdown Tim3 expression, three different shRNA sequences specific to different segments of the human Tim3 gene were designed and co-inserted with an anti-MSLN-CAR transgene into lentiviral vectors. To investigate the efficacy of Tim3 targeting in T cells, expression of Tim3 was assessed before and after antigen stimulation. Afterwards, cytotoxic effects, proliferative response and cytokine production of MSLN-CAR T cells and Tim3-targeted MSLN-CAR T cells were analyzed. Our results showed that activation of T cells and MSLN-CAR T cells led to up-regulation of Tim3. Tim3 knockdown significantly decreased its expression in different groups of MSLN-CAR T cells. Tim3 knockdown significantly improved cytotoxic function, cytokine production and proliferation capacity of MSLN-CAR T cells. Our findings indicate that targeted knockdown of Tim3 allows tumor-infiltrating CAR T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby altering the tumor microenvironment from immunosuppressive to immunosupportive via mitigated Tim3 signaling.


Assuntos
Proteínas Ligadas por GPI/antagonistas & inibidores , Técnicas de Silenciamento de Genes/métodos , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Humanos , Mesotelina , RNA Interferente Pequeno , Receptores de Antígenos Quiméricos
4.
Iran J Allergy Asthma Immunol ; 19(3): 264-275, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615660

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is considered as an encouraging approach for the treatment of hematological malignancies. However, its efficacy in solid tumors has not been satisfying, mainly in the immunosuppressive network of the tumor microenvironment and paucity of appropriate target antigens. Mesothelin (MSLN) is a tumor-associated antigen (TAA) expressed in numerous types of solid tumors such as gastrointestinal, ovarian, and pancreatic tumors. Owing to high expression in tumor cells and low expression in normal tissues, MSLN-targeted therapies like monoclonal antibodies have been previously developed. In the present study, a CAR T cell harboring the second-generation of a fully human anti-MSLN-CAR construct containing CD3ζ and 4-1BB signaling domains was produced and it was functionally evaluated against an MSLN-expressing cell line. The findings showed potent, specific proliferation, cytotoxic activity, and interleukin (IL)-2, Tumor necrosis factor-(TNF) α, and Interferon-(IFN) γ production in an antigen-dependent manner. Cytotoxic activity was shown in effector-to-target ratio from 1:1 to 20:1, but the most adequate efficacy was observed in the ratio of 10:1. Non-specific activity against MSLN negative cell line was not observed. Our data demonstrated that primary human T cells expressing fully human MSLN-CAR construct are effective against MSLN-expressing cell lines in vitro, suggesting this MSLN-CAR construct as a potential therapeutic tool in a clinical setting.


Assuntos
Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Proteínas Ligadas por GPI/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/genética , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Citocinas/imunologia , Proteínas Ligadas por GPI/genética , Humanos , Mesotelina , Receptores de Antígenos Quiméricos/genética
5.
Immunol Lett ; 223: 44-52, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32289340

RESUMO

In spite of impressive results in the treatment of acute lymphoblastic B cell leukemia (B-ALL) with chimeric antigen receptor (CAR) T cells, the clinical outcome of some hematological cancers like follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL) has not been very promising likely due to immunosuppressive networks within tumor microenvironment. Hypoxia in the microenvironment of hematological malignancies and consequently generation of adenosine molecule is appeared to be correlated with immunosuppression, tumor progression, and relapse. Herein, we hypothesized that whether pharmacological targeting of adenosine 2a receptor (A2aR) can enhance antitumor activity of anti-CD19 CAR T cells in vitro. Prior to functional assays, A2aR expression was assessed in CAR-expressing T cells. Our results showed that A2aR was not only up-regulated in the fully human anti-CD19 CAR T cells (hereafter referred to as huCAR19 T cells) but also was further overexpressed following re-stimulation with target cells. Although pharmacological inhibition of A2aR could significantly increase proliferation capacity and cytokine production of huCAR19 T cells following treatment with an adenosine analog, cytotoxic activity of huCAR19 T cells was not significantly improved. Considering A2aR overexpression in huCAR19 T cells in the tumor microenvironment, our results indicated that pharmacological targeting of A2aR could not only improve huCAR19 T cells functionality in a hostile tumor microenvironment but also could have a therapeutic advantage, and sought to assess the possibility in a pre-clinical setting.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor A2A de Adenosina/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Adenosina/metabolismo , Antígenos CD19/imunologia , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Tolerância Imunológica , Ativação Linfocitária , Terapia de Alvo Molecular , Receptor A2A de Adenosina/genética , Receptores de Antígenos Quiméricos/genética , Microambiente Tumoral
6.
J Exp Clin Cancer Res ; 39(1): 49, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32151275

RESUMO

BACKGROUND: CAR T cell-based therapies have shown promising results in hematological malignancies. Results of CAR T cell projects in solid tumors have been less impressive, and factors including lack of targetable antigens and immunosuppressive tumor microenvironment (TME) have been suggested as culprits. Adenosine, a metabolite which is highly produced in TME, is known to mediate the suppression of anti-tumor T cell responses via binding and signaling through adenosine 2a receptor (A2aR). METHODS: In this study, the expression of A2aR and the effects of its activation on the function of fully human anti-mesothelin CAR T cells (MSLN-CAR T), were analyzed. Afterwards, the molecular and pharmacological means to overcome the inhibitory effects of A2aR signaling on CAR T cell function were used. This was performed by targeting A2aR expression in MSLN-CAR T cells using various anti-A2aR shRNA sequences embedded in the CAR vector and an A2aR pharmacological antagonist, SCH-58261. Statistical analyses were performed Prism 7 software. RESULTS: Our experiments showed significant A2aR upregulation on T cells during the CAR T cell production procedure (cell activation and transduction). Activation of adenosine signaling using adenosine analog led to the suppression of all major anti-tumor functions in MSLN-CAR T cells. Interestingly, CAR T cells that carried the anti-A2aR shRNA sequences were resistant to the inhibitory effects of adenosine signaling. Pharmacological inhibition of A2aR reversed the reduction in CAR T cell proliferation and cytokine response caused by the adenosine analog; however, it failed to rescue the cytotoxic function of the cells. CONCLUSION: Altogether, our results indicate that mitigating A2aR signaling by genetic targeting of the receptor might be a promising approach in improving CAR T cell function in an unreceptive microenvironment and could potentially improve the outcome of treatment in clinical settings.


Assuntos
Proteínas Ligadas por GPI/imunologia , Neoplasias/genética , Pirimidinas/farmacologia , Receptor A2A de Adenosina/genética , Receptores de Antígenos Quiméricos/metabolismo , Triazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Imunoterapia Adotiva , Mesotelina , Neoplasias/terapia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral , Regulação para Cima
7.
J Cell Physiol ; 234(6): 9207-9215, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30362586

RESUMO

Although remarkable results have been attained by adoptively transferring T cells expressing fully murine and/or humanized anti-CD19 chimeric antigen receptors (CARs) to treat B cell malignancies, evidence of human anti-mouse immune responses against CARs provides a rationale for the development of less immunogenic CARs. By developing a fully human CAR (huCAR), these human anti-mouse immune responses are likely eliminated. This, perhaps, not only increases the persistence of anti-CD19 CAR T cells-thereby reducing the risk of tumor relapse-but also facilitates administration of multiple, temporally separated doses of CAR T cells to the same recipient. To these ends, we have designed and constructed a second-generation fully human anti-CD19 CAR (or huCAR19) containing a fully human single-chain variable fragment (ScFv) fused with a CD8a hinge, a 4-1BB transmembrane domain and intracellular T cell signaling domains of 4-1BB and CD3z. T cells expressing this CAR specifically recognized and lysed CD19+ target cells produced cytokines and proliferated in vitro. Moreover, cell volume data revealed that our huCAR construct cannot induce antigen-independent tonic signaling in the absence of cognate antigen. Considering our results, our anti-CD19 huCAR may overcome issues of transgene immunogenicity that plague trials utilizing CARs containing mouse-derived ScFvs. These results suggest that this huCAR19 be safely and effectively applied for adaptive T cell immunotherapy in clinical practice.


Assuntos
Antígenos CD19/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Proliferação de Células , Citocinas/biossíntese , Citotoxicidade Imunológica , Células HEK293 , Humanos , Lentivirus/genética , Ativação Linfocitária/imunologia , Transdução de Sinais
8.
Enzyme Microb Technol ; 93-94: 92-98, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27702489

RESUMO

Uric acid, a side product of nucleotide metabolism, should be cleared from blood stream since its accumulation can cause cardiovascular diseases and gout. Uricase (urate oxidase) converts uric acid to 5-hydroxyisourate, but it is absent in human and other higher apes. Yet, the recombinant form of uricase, Rasburicase, is now commercially available to cure tumor lysis syndrome by lowering serum uric acid level. Developing new methods to efficiently purify pharmaceutical proteins like uricase has attracted researchers' attention. Self-cleaving intein mediated single column purification is one of these novel approaches. Self-cleaving inteins are modified forms of natural inteins that can excise and join only at one junction site. In this study, the synthetic gene of Aspergillus flavus uricase, a homotetrameric protein, was cloned into pTXB1 vector as a fusion with the N-terminal of Mxe GyrA intein and chitin-binding domain (CBD) for simple purification. Expression was confirmed by western blot analysis. The fusion protein containing uricase-intein-CBD was purified on a chitin column. The cleavage was induced by adding DTT,1 as a reducing agent to release uricase. The purity of uricase and complete excision of the intein and CBD were confirmed by SDS-PAGE2 while its proper folding was proved by circular dichroism and fluorescent emission studies. Isoelectric focusing further confirmed its homogeneity when a single protein band was observed at the predicted pI value. This is the first report of successful purification of a multimeric therapeutic enzyme by intein-mediated protein cleaving using a well-established and facile system.


Assuntos
Inteínas , Urato Oxidase/isolamento & purificação , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Estabilidade Enzimática , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Sintéticos , Humanos , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Urato Oxidase/genética , Urato Oxidase/metabolismo
9.
EXCLI J ; 12: 15-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27034629

RESUMO

It has been suggested that the "visibility" of an article influences its citation count. More specifically, it is believed that the social media can influence article citations.Here we tested the hypothesis that inclusion of scholarly references in Wikipedia affects the citation trends. To perform this analysis, we introduced a citation "propensity" measure, which is inspired by the concept of amino acid propensity for protein secondary structures. We show that although citation counts generally increase during time, the citation "propensity" does not increase after inclusion of a reference in Wikipedia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA