Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Carbohydr Polym ; 336: 122124, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670755

RESUMO

Sulfated polysaccharides play important roles in tissue engineering applications because of their high growth factor preservation ability and their native-like biological features. There are different sulfated polysaccharides based on different repeating units in the carbohydrate backbone, the position of the sulfate group, and the sulfation degree of the polysaccharide. These led to various sulfated polymers with different negative charge densities and resultant structure-property relationships. Since numerous reports are presented related to sulfated polysaccharide applications in tissue engineering, it is crucial to review the role of effective physicochemical and biological parameters in their usage; as well as their structure-property relationships. Within this review, we focused on the effect of naturally occurring and synthetic sulfated polysaccharides in tissue engineering applications reported in the last years, highlighting the challenges of the scaffold fabrication process, the position, and the degree of sulfate on biomedical activity. Additionally, we discussed their use in numerous in vitro and in vivo model systems.


Assuntos
Materiais Biomiméticos , Polissacarídeos , Sulfatos , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Polissacarídeos/química , Polissacarídeos/farmacologia , Alicerces Teciduais/química , Humanos , Animais , Sulfatos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biopolímeros/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
ACS Appl Bio Mater ; 7(4): 2140-2152, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470456

RESUMO

Skin injuries lead to a large burden of morbidity. Although numerous clinical and scientific strategies have been investigated to repair injured skin, optimal regeneration therapy still poses a considerable obstacle. To address this challenge, decellularized extracellular matrix-based scaffolds recellularized with stem cells offer significant advancements in skin regeneration and wound healing. Herein, a decellularized human placental sponge (DPS) was fabricated using the decellularization and freeze-drying technique and then recellularized with human adipose-derived mesenchymal cells (MSCs). The biological and biomechanical properties and skin full-thickness wound healing capacity of the stem cells-DPS constructs were investigated in vitro and in vivo. The DPS exhibited a uniform 3D microstructure with an interconnected pore network, 89.21% porosity, a low degradation rate, and good mechanical properties. The DPS and MSCs-DPS constructs were implanted in skin full-thickness wound models in mice. An accelerated wound healing was observed in the wounds implanted with the MSCs-DPS construct when compared to DPS and control (wounds with no treatment) during 7 and 21 days postimplantation follow-up. In the MSCs-DPS group, the wound was completely re-epithelialized, the epidermis layer was properly organized, and the dermis and epidermis' bilayer structures were restored after 7 days. Our findings suggest that DPS is an excellent carrier for MSC culture and delivery to skin wounds and now promises to proceed with clinical evaluations.


Assuntos
Células-Tronco Mesenquimais , Cicatrização , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta , Pele/lesões , Modelos Animais
3.
Small ; 20(24): e2309164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175832

RESUMO

Attempts are made to design a system for sustaining the delivery of copper ions into diabetic wounds and induce angiogenesis with minimal dose-dependent cytotoxicity. Here, a dual drug-delivery micro/nanofibrous core-shell system is engineered using polycaprolactone/sodium sulfated alginate-polyvinyl alcohol (PCL/SSA-PVA), as core/shell parts, by emulsion electrospinning technique to optimize sustained delivery of copper oxide nanoparticles (CuO NP). Herein, different concentrations of CuO NP (0.2, 0.4, 0.8, and 1.6%w/w) are loaded into the core part of the core-shell system. The morphological, biomechanical, and biocompatibility properties of the scaffolds are fully determined in vitro and in vivo. The 0.8%w/w CuO NP scaffold reveals the highest level of tube formation in HUVEC cells and also upregulates the pro-angiogenesis genes (VEGFA and bFGF) expression with no cytotoxicity effects. The presence of SSA and its interaction with CuO NP, and also core-shell structure sustain the release of the nanoparticles and provide a non-toxic microenvironment for cell adhesion and tube formation, with no sign of adverse immune response in vivo. The optimized scaffold significantly accelerates diabetic wound healing in a rat model. This study strongly suggests the 0.8%w/w CuO NP-loaded PCL/SSA-PVA as an excellent diabetic wound dressing with significantly improved angiogenesis and wound healing.


Assuntos
Cobre , Células Endoteliais da Veia Umbilical Humana , Nanofibras , Cicatrização , Cobre/química , Cicatrização/efeitos dos fármacos , Animais , Nanofibras/química , Humanos , Emulsões/química , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Alicerces Teciduais/química , Ratos , Nanopartículas/química , Masculino , Ratos Sprague-Dawley , Poliésteres/química , Angiogênese
4.
Biotechnol Bioeng ; 121(4): 1453-1464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234099

RESUMO

An ideal antibacterial wound dressing with strong antibacterial behavior versus highly drug-resistant bacteria and great wound-healing capacity is still being developed. There is a clinical requirement to progress the current clinical cares that fail to fully restore the skin structure due to post-wound infections. Here, we aim to introduce a novel two-layer wound dressing using decellularized bovine skin (DBS) tissue and antibacterial nanofibers to design a bioactive scaffold with bio-mimicking the native extracellular matrix of both dermis and epidermis. For this purpose, polyvinyl alcohol (PVA)/chitosan (CS) solution was loaded with antibiotics (colistin and meropenem) and electrospun on the surface of the DBS scaffold to fabricate a two-layer antibacterial wound dressing (DBS-PVA/CS/Abs). In detail, the characterization of the fabricated scaffold was conducted using biomechanical, biological, and antibacterial assays. Based on the results, the fabricated scaffold revealed a homogenous three-dimensional microstructure with a connected pore network, a high porosity and swelling ratio, and favorable mechanical properties. In addition, according to the cell culture result, our fabricated two-layer scaffold surface had a good interaction with fibroblast cells and provided an excellent substrate for cell proliferation and attachment. The antibacterial assay revealed a strong antibacterial activity of DBS-PVA/CS/Abs against both standard strain and multidrug-resistant clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Our bilayer antibacterial wound dressing is strongly suggested as an admirable wound dressing for the management of infectious skin injuries and now promises to advance with preclinical and clinical research.


Assuntos
Quitosana , Nanofibras , Infecção dos Ferimentos , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/química , Pele , Cicatrização , Quitosana/química , Álcool de Polivinil/química , Infecção dos Ferimentos/tratamento farmacológico , Nanofibras/química
5.
Artif Organs ; 48(2): 117-129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909148

RESUMO

BACKGROUND: Functionalization of wound dressing is one of the main approaches for promoting wound healing in skin wound management. In this study, our aim is to fabricate a bio-functionalized hydrocolloid wound dressing. METHODS: The extracellular matrix (ECM) was extracted from human placental tissue. A hydrocolloid film was fabricated using Na-CMC, pectin, gelatin, styrene-isoprene-styrene adhesive, glycerol, and 0.5%-2.5% powdered ECM. A polyurethane film and a release liner were used in the hydrocolloid/ECM films. The mechanical, adhesion, swelling rate, and integrity of the films were investigated. Cell proliferation, adhesion, and migration assays, as well as, SEM and FTIR spectroscopy were also conducted. Macroscopic and microscopic evaluations of wound healing process and formation of blood vessels were conducted in mouse animal models. RESULTS: We successfully fabricated a three-layered ECM-functionalized hydrocolloid dressing with a water vapor transmission rate of 371 g/m2 /day and an adhesion peel strength of 176 KPa. Cellular adhesion, proliferation and migration were promoted by ECM. In the animal tests, ECM-functionalized hydrocolloids significantly improved wound closure and re-epithelialization at days 14 and 21. Also, ECM-functionalized hydrocolloids promoted the formation of hair follicles. CONCLUSIONS: Our findings suggest that ECM could enhance the wound healing properties of hydrocolloid wound dressings. This wound dressing could be considered for application in hard-to-heal acute wounds.


Assuntos
Matriz Extracelular , Placenta , Gravidez , Humanos , Feminino , Camundongos , Animais , Curativos Hidrocoloides , Animais de Laboratório , Coloides/química , Estirenos
6.
Amino Acids ; 55(8): 955-967, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314517

RESUMO

Post-wound infections have remained a serious threat to society and healthcare worldwide. Attempts are still being made to develop an ideal antibacterial wound dressing with high wound-healing potential and strong antibacterial activity against extensively drug-resistant bacteria (XDR). In this study, a biological-based sponge was made from decellularized human placenta (DPS) and then loaded with different concentrations (0, 16 µg/mL, 32 µg/mL, 64 µg/mL) of an antimicrobial peptide (AMP, CM11) to optimize an ideal antibacterial wound dressing. The decellularization of DPS was confirmed by histological evaluations and DNA content assay. The DPS loaded with different contents of antimicrobial peptides (AMPs) showed uniform morphology under a scanning electron microscope (SEM) and cytobiocompatibility for human adipose tissue-derived mesenchymal stem cells. Antibacterial assays indicated that the DPS/AMPs had antibacterial behavior against both standard strain and XDR Acinetobacter baumannii in a dose-dependent manner, as DPS loaded with 64 µg/mL showed the highest bacterial growth inhibition zone and elimination of bacteria under SEM than DPS alone and DPS loaded with 16 µg/mL and 32 µg/mL AMP concentrations. The subcutaneous implantation of all constructs in the animal model demonstrated no sign of acute immune system reaction and graft rejection, indicating in vivo biocompatibility of the scaffolds. Our findings suggest the DPS loaded with 64 µg/mL as an excellent antibacterial skin substitute, and now promises to proceed with pre-clinical and clinical investigations.


Assuntos
Peptídeos Antimicrobianos , Pele Artificial , Gravidez , Animais , Feminino , Humanos , Placenta , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Bactérias
7.
Mater Today Bio ; 20: 100666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273796

RESUMO

Extracellular matrix (ECM)-based bioinks has attracted much attention in recent years for 3D printing of native-like tissue constructs. Due to organ unavailability, human placental ECM can be an alternative source for the construction of 3D print composite scaffolds for the treatment of deep wounds. In this study, we use different concentrations (1.5%, 3% and 5%w/v) of ECM derived from the placenta, sodium-alginate and gelatin to prepare a printable bioink biomimicking natural skin. The printed hydrogels' morphology, physical structure, mechanical behavior, biocompatibility, and angiogenic property are investigated. The optimized ECM (5%w/v) 3D printed scaffold is applied on full-thickness wounds created in a mouse model. Due to their unique native-like structure, the ECM-based scaffolds provide a non-cytotoxic microenvironment for cell adhesion, infiltration, angiogenesis, and proliferation. In contrast, they do not show any sign of immune response to the host. Notably, the biodegradation, swelling rate, mechanical property, cell adhesion and angiogenesis properties increase with the increase of ECM concentrations in the construct. The ECM 3D printed scaffold implanted into deep wounds increases granulation tissue formation, angiogenesis, and re-epithelialization due to the presence of ECM components in the construct, when compared with printed scaffold with no ECM and no treatment wound. Overall, our findings demonstrate that the 5% ECM 3D scaffold supports the best deep wound regeneration in vivo, produces a skin replacement with a cellular structure comparable to native skin.

8.
Water Environ Res ; 95(4): e10854, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36965038

RESUMO

In this study, the physical, chemical, and biological characteristics of raw wastewater were compared with the liquid and solid streams generated by a primary clarifier (PC), a rotating belt filter (RBF, 350 µm), and a drum filter (DF, 60 µm) and series (SER) combination of an RBF with a PC or a DF using pilot-scale primary treatment units. The RBF removed about 36% of the influent total suspended solids. The DF and PC yielded an influent total suspended solid removal of 47% to 55% in both individual (parallel) and SER configurations. The size fractionation and chemical characterizations of the liquid fractions indicated a significant change in the wastewater composition in both filter configurations with no variation in the biodegradability of liquid fractions. The solids recovered by RBF had a higher total solids (TS) concentration and a higher volatile solids (VS) content (0.92 g VS/g TS) than that of DF and PC treatments (0.58 to 0.84 g VS/g TS). DF and PC sludge demonstrated a higher biodegradability rate (k1 ; 0.11 d-1 < k1 < 0.20 d-1 ) than solids recovered by RBF (0.09 d-1 ). The retained solids in the SER configuration demonstrated a significantly lower theoretical biochemical methane potential than the parallel configuration, likely due to the presence of smaller particles with a significantly higher ratio of particulate chemical oxygen demand over volatile suspended solids (1.86 to 2.40 g chemical oxygen demand/g volatile suspended solids). These results indicated that the physical, chemical, and biological characteristics of liquid and solids from different filter configurations are required to determine design criteria to upgrade or retrofit water resource recovery facilities using an RBF or a DF. PRACTITIONER POINTS: A rotating belt filter (RBF) removed less solids than a drum filter (DF) or a primary clarifier (PC). A series configuration of an RBF with either a DF or PC resulted in an effluent with a lower proportion of slowly biodegradable organic matter than in a parallel configuration. Solids from an RBF, a DF, or a PC had similar theoretical biochemical methane potential.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Material Particulado , Esgotos/química , Metano
9.
Int J Biol Macromol ; 229: 22-34, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36460249

RESUMO

Resistance of bacterial pathogens to conventional antibiotics has remained a significant challenge in managing post-wound infections, especially in developing countries. Here, a nanofibrous chitosan/poly (vinyl alcohol) (CS/PVA) mat was designed for controlled delivery of three different concentrations of two antibiotics (colistin/meropenem ratio of 32/64 µg/ml (AB1), 64/128 µg/ml (AB2), and 128/256 (AB3) µg/ml) with synergistic antibacterial activity against ATCC and extensively drug-resistant (XDR) Acinetobacter baumannii clinical isolates. The scaffolds showed a uniform fibrous structure with no bead formation with a sustained release of the antibiotics for one week. The elongation at break, wettability, porosity, and average fiber diameter decreased with increased antibiotics concentrations. Young's modulus and tensile strength showed a significant increase after adding antibiotics. All the constructs showed excellent in vitro cytocompatibility for fibroblasts and biocompatibility in an animal model. The antibacterial assays confirmed the dose-dependent antibacterial activity of the CS/PVA. The scaffolds loaded with AB2 and AB3 showed biocidal properties against ATCC, while only CS/PVA/AB3 had antibacterial activity against XDR clinical isolates. This study suggests the CS/PVA/AB3 nanofibrous scaffold contained 128/256 µg/ml colistin/meropenem as an excellent antibacterial wound dressing for protection of skin wounds from XDR clinical isolates and now promises to proceed with pre-clinical investigations.


Assuntos
Quitosana , Nanofibras , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Nanofibras/química , Meropeném , Colistina , Álcool de Polivinil/química , Bactérias
10.
Macromol Biosci ; 23(2): e2200386, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36398565

RESUMO

Attempts are being made to develop an ideal wound dressing with excellent biomechanical and biological properties. Here, a thermos-responsive hydrogel is fabricated using chitosan (CTS) with various concentrations (1%, 2.5%, and 5% w/v) of solubilized placental extracellular matrix (ECM) and 20% ß-glycerophosphate to optimize a smart wound dressing hydrogel with improved biological behavior. The thermo-responsive CTS (TCTS) alone or loaded with ECMs (ECM-TCTS) demonstrate uniform morphology using SEM. TCTS and ECM1%-TCTS and ECM2.5%-TCTS show a gelation time of 5 min at 37 °C, while no gel formation is observed at 4 and 25 °C. ECM5%-TCTS forms gel at both 25 and 37 °C. The degradation and swelling ratios increase as the ECM content of the hydrogel increase. All the constructs show excellent biocompatibility in vitro and in vivo, however, the hydrogels with a higher concentration of ECM demonstrate better cell adhesion for fibroblast cells and induce expression of angiogenic factors (VEGF and VEGFR) from HUVEC. Only the ECM5%-TCTS has antibacterial activity against Acinetobacter baumannii ATCC 19606. The data obtained from the current study suggest the ECM2.5%-TCTS as an optimized smart biomimetic wound dressing with improved angiogenic properties now promises to proceed with pre-clinical and clinical investigations.


Assuntos
Quitosana , Hidrogéis , Gravidez , Feminino , Humanos , Hidrogéis/farmacologia , Quitosana/farmacologia , Biomimética , Cicatrização , Placenta , Bandagens , Antibacterianos/farmacologia , Proteínas da Matriz Extracelular
11.
BMC Pregnancy Childbirth ; 21(1): 223, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743611

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by reproductive disorder and increased risk of metabolic syndrome. This study aimed to assess the metabolic parameters in the cord blood of neonate of mothers with obese PCOS and comparison with non-obese PCOS and controls. METHODS: This retrospective cohort study was conducted in Arash and Kamali Hospital in 2017-2018. The biochemical test was conducted on 78 neonates from obese PCOS mothers, 78 neonates from non-obese PCOS mothers, and 78 neonates from healthy mothers. Finally, cord blood lipid profile and insulin and blood sugar were determined by specific kits. Correlations between variables were compared with chi-square, Mann-Whitney's U, Kruskal-Wallis H tests and regression model by SPSS 23 and P < 0.05 was considered significant. RESULTS: Triglycerides (TG) and high-density lipoprotein cholesterol (HDL) were higher in cord blood of newborn of obese PCOS women than non-obese PCOS and controls (P = 0.02, P < 0.001, respectively). Also, the mean insulin was higher in cord blood of neonate of non-obese PCOS women than in obese PCOS and controls (12.26 ± 12.79 vs. 11.11 ± 16.51 vs. 6.21 ± 10.66, P = 0.01). But in the study, there was no significant difference between the mean of umbilical cord low-density lipoprotein cholesterol (LDL), total cholesterol and blood sugar in three groups. The logistic regression model showed that metabolic parameters were related to PCOS. CONCLUSIONS: In the present study, there was a significant difference between the mean of umbilical cord HDL, cholesterol, and the insulin level in the three groups. But, there was no significant association between the mean of blood sugar, LDL, and TG in the groups. The metabolic disorder in PCOS might affect cord blood lipid and insulin and adulthood health.


Assuntos
Sangue Fetal/química , Síndrome Metabólica/diagnóstico , Obesidade/complicações , Síndrome do Ovário Policístico/complicações , Complicações na Gravidez/metabolismo , Adulto , Feminino , Humanos , Recém-Nascido , Insulina/análise , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Lipídeos/análise , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Gravidez , Complicações na Gravidez/sangue , Estudos Retrospectivos
12.
Dent Res J (Isfahan) ; 18: 97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003562

RESUMO

BACKGROUND: To evaluate the effect of Ethanol Wet Bonding Technique (EWBT) on postoperative hypersensitivity (POH) of composite restorations in premolar teeth. MATERIALS AND METHODS: In this randomized trial, 24 patients with at least three proximal carious lesions with similar axial depth and position of gingival floor in their premolars were enrolled. Following cavity preparation, the teeth were randomly assigned to one of three groups: (1) Class II resin-based composite (RBC) restoration using an etch-and-rinse adhesive + wet bonding technique (Control); (2) RBC restoration using EWBT + hydrophobic adhesive; and (3) RBC restoration using EWBT + hydrophilic adhesive. Tooth hypersensitivity was evaluated before and 1, 3, 7, 14 and 30 days after treatment according to the Visual Analog Scale. Data were analyzed statistically with Kruskal-Wallis and Friedman tests (P = 0.05). RESULTS: All teeth showed similar levels of hypersensitivity after treatment (both P > 0.05). Furthermore, there was no difference between POH levels of the test and control groups at any control period (P < 0.05). Friedman test indicated that the POH significantly reduced within time in all groups (P < 0.05). CONCLUSION: Application of ethanol-wet bonding technique, either with hydrophobic or hydrophilic adhesives did not affect the POH of Class II composite restorations in premolars.

13.
Biochem Biophys Res Commun ; 517(4): 684-690, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400855

RESUMO

Worldwide, impaired wound healing leads to a large burden of morbidity and mortality. Current treatments have several limitations. Recently, nanomaterials such as copper nanoparticles (CuNPs) have attracted considerable research interest. Here, we investigated the potential therapeutic effect of various CuNPs concentrations (1 µM, 10 µM, 100 µM, 1 mM, and 10 mM) and sizes (20 nm, 40 nm, 80 nm) in wound healing. Our results revealed that the 10 µM concentration of 40 nm CuNPs and the 1 µM concentration of 80 nm CuNPs were not toxic to the cultured fibroblast, endothelial, and keratinocyte cells, and also 1 µM concentration of 80 nm CuNPs enhanced endothelial cell migration and proliferation. Extensive assessment of in vivo wound healing demonstrated that the 1 µM concentration of 80 nm CuNPs accelerated wound healing over a shorter time via formation of granulation tissue and higher new blood vessels. Importantly, serum biochemical analysis confirmed that the 40 nm CuNP (10 µM) and 80 nm CuNP (1 µM) did not show any accumulation in the liver during wound healing. Overall, our results have indicated that the 1 µM concentration of 80 nm CuNPs is a promising NP for wound healing applications without adverse side effects.


Assuntos
Movimento Celular/efeitos dos fármacos , Cobre/farmacologia , Nanopartículas Metálicas/química , Neovascularização Fisiológica/efeitos dos fármacos , Pele/citologia , Cicatrização/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Fígado/citologia , Nanopartículas Metálicas/ultraestrutura
14.
Environ Sci Technol ; 53(15): 9148-9159, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31294965

RESUMO

Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for required upgrades due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached-growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution, and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64 day exposure to nominal concentrations of 10 and 100 µg/L. Distributions of continuously added AgNPs were characterized in the influent, bioreactor, and effluent of MBBRs using single particle inductively coupled plasma mass spectroscopy (spICP-MS). Aerobic heterotrophic biofilms in MBBRs demonstrated limited retention capacity for AgNPs over long-term exposure, with release of AgNPs, and Ag-rich biofilm sloughed from the carriers. Continuous exposure to both influent AgNP concentrations significantly decreased soluble chemical oxygen demand (SCOD) removal efficiency (11% to 31%) and reduced biofilm viability (8% to 30%). Specific activities of both intracellular dehydrogenase (DHA) and extracellular α-glucosidase (α-Glu) and protease (PRO) enzymes were significantly inhibited (8% to 39%) with an observed NP dose-dependent intracellular reactive oxygen species (ROS) production and shift in biofilm microbial community composition by day 64. Our results indicated that long-term exposure to AgNPs in biofilm processes at environmentally relevant concentrations can impact the treatment process stability and the quality of the discharged effluent.


Assuntos
Nanopartículas Metálicas , Microbiota , Biofilmes , Prata , Águas Residuárias
15.
Sci Total Environ ; 647: 1199-1210, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180328

RESUMO

Municipal water resource recovery facilities are the primary recipients of a significant fraction of discharged silver nanoparticle (AgNP)-containing wastes, yet the fate and potential risks of AgNPs in attached-growth biological wastewater treatment processes are poorly understood. The fate and inhibitory effects of polyvinylpyrrolidone (PVP)-coated AgNPs at environmentally-relevant nominal concentrations (10, 100, 600 µg/L) were investigated, for the first time, in high rate moving bed biofilm reactors (MBBRs) for soluble organic matter removal. The behavior and removal of continuously added AgNPs were characterized using single-particle inductively coupled plasma mass spectrometry (spICP-MS). While no inhibitory effect at average influent concentration of 10.8 µg/L Ag was observed, soluble COD removal efficiency was significantly decreased at 131 µg/L Ag in 18 days and 631 µg/L Ag in 5 days with suppressed biofilm viability. The inhibitory effect of AgNPs on treatment efficiency was highly correlated to the retained mass of total Ag in attached biofilm on the carriers. Biofilm demonstrated limited retention capacity for AgNPs over 18 days. Considerable mass of Ag (38% to 75%) was released via effluent, predominantly as NPs. We detected some chemically transformed and potentially less toxic forms of silver nanoparticles (Ag2S, AgCl), over the exposure period. This study demonstrated the distinct interaction dynamics, bioavailability and inhibitory effects of AgNPs in a biofilm system. Release of bioavailable AgNPs via effluent and AgNP-rich biofilm, sloughing off the carriers, can affect the treatment chain efficiency of downstream processes. Thus, the inhibitory effects of AgNPs can be a concern even at concentrations as low as 100 to 600 µg/L Ag in biological attached growth wastewater treatments.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Nanopartículas Metálicas/análise , Prata/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Nanopartículas Metálicas/toxicidade , Povidona , Prata/toxicidade , Águas Residuárias , Poluentes Químicos da Água/toxicidade
16.
J Environ Sci (China) ; 73: 162-176, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30290865

RESUMO

The feasibility of using two types of biochars to reduce steroid hormone pollution from poultry and swine manure application on agricultural land was evaluated. The sorption affinity and desorption resistance of softwood and hardwood biochars were also determined for two estrogen hormones, 17ß-estradiol (E2) and its primary metabolite estrone (E1). The softwood and hardwood biochars demonstrated high retention capacity for both estrogens. The effective distribution coefficient (Kdeff) of soil-softwood-derived biochar (SBS450) was significantly higher than soil-hardwood-derived biochar (SBH750), indicating the stronger sorption affinity of SBS450 for estrogens. To validate the laboratory results, a field lysimeter experiment was conducted to study the fate and transport of E2 and E1 in soil and leachate in the presence of 1% softwood-biochar (BS450) in topsoil and to compare it with soil without any amendments. The spatio-temporal distribution of both estrogens was monitored at four depths over a 46-day period. The lysimeters, in which the surface layer of soil was amended with biochar, retained significantly higher concentrations of both estrogen hormones. Although they leached through the soil and were detected in leachates, collected at 1.0m depth, the concentrations were significantly lower in the leachate collected from biochar-amended lysimeters. The result confirmed the efficacy of biochar amendment as a remediation technique to alleviate the manure-borne hormonal pollution of groundwater.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Estrogênios/química , Poluentes do Solo/química , Solo/química , Agricultura , Estrogênios/análise , Poluentes do Solo/análise
17.
Chemosphere ; 176: 405-411, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28278429

RESUMO

The effect of ozonation of anaerobic digested sludge on methane production was studied as a means of increasing the capacity of municipal anaerobic digesters. Ozone doses ranging from 0 to 192 mg O3/g sludge COD were evaluated in batch tests with a bench scale ozonation unit. Ozonation initially, and temporarily, reduced biomass viability and acetoclastic methanogenic activity, resulting in an initial lag phase ranging from 0.8 to 10 days. Following this lag phase, ozonation enhanced methane production with an optimal methane yield attained at 86 mg O3/g COD. Under these conditions, the yield of methane and the rate of its formation were 52% and 95% higher, respectively, than those factors measured without ozonation. A required optimal ozone dose could be feasible to improve the anaerobic digestion performance by increasing the methane production potential with a minimum impact on microbial activity; thus, an optimal ozone dose would enable an increase in the capacity of anaerobic digesters.


Assuntos
Metano/análise , Viabilidade Microbiana , Ozônio/química , Esgotos/análise , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Biomassa
18.
Int J Biomater ; 2015: 921425, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26839550

RESUMO

The aim of this study was to evaluate the effect of bleaching and thermocycling on microshear bond strength of bonded resin composites to enamel. Enamel slices were prepared from ninety-six intact human premolars and resin composite cylinders were bonded by using Adper Single Bond 2 + Filtek Z350 or Filtek silorane adhesive and resin composite. Each essential group was randomly subdivided to two subgroups: control and bleaching. In bleaching group, 35% hydrogen peroxide was applied on samples. Thermocycling procedure was conducted between 5°C and 55°C, for 3.000 cycles on the half of each subgroup specimen. Then microshear bond strength was tested. Methacrylate-based resin composite had higher bond strength than silorane-based one. The meyhacrylate-based group without bleaching along with thermocycling showed the most bond strength, while bleaching with 35% carbamide peroxide on silorane-based group without thermocycling showed the least microshear bond strength. Bleaching caused a significant degradation on shear bond strength of silorane-based resin composites that bonded using self-etch adhesive resin systems.

19.
Am J Orthod Dentofacial Orthop ; 141(2): 169-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22284284

RESUMO

INTRODUCTION: The aim of this study was to compare the efficacy of ibuprofen, viscoelastic bite wafers, and chewing gum in reducing orthodontic pain. METHODS: This randomized clinical trial included 50 girls between the ages of 13 and 18 years classified into 5 groups of 10 each: placebo, ibuprofen (400 mg), chewing gum, soft viscoelastic wafer, and hard viscoelastic wafer. The patients in each group received 1 method immediately after placement of the initial archwires and every 8 hours if they experienced pain. Pain perception was recorded by the patients while chewing, biting, fitting front teeth, and fitting posterior teeth at 2 hours, 6 hours, bedtime, 24 hours, 2 days, 3 days, and 7 days after archwire placement, using a visual analog scale. Analysis of variance (ANOVA) and Tukey tests were used for data analysis. RESULTS: There were significant differences in pain perception of chewing function between the placebo group and the chewing-gum group at 24 hours and 7 days, and between the placebo group and the hard-viscoelastic group on the day 7 (P <0.05). Also, there were significant differences between the placebo group and the soft-viscoelastic group, and between the placebo group and the hard-viscoelastic group in pain severity when fitting posterior teeth at 6 hours (P <0.05). At other times and with other functions, no significant differences were recorded. CONCLUSIONS: Both chewing gum and viscoelastic bite wafers are effective for pain reduction in orthodontic patients and can be recommended as suitable substitutes for ibuprofen.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Goma de Mascar , Ibuprofeno/uso terapêutico , Placas Oclusais , Dor/prevenção & controle , Técnicas de Movimentação Dentária/instrumentação , Substâncias Viscoelásticas/uso terapêutico , Adolescente , Anti-Inflamatórios não Esteroides/uso terapêutico , Força de Mordida , Oclusão Dentária , Feminino , Seguimentos , Humanos , Mastigação/fisiologia , Fios Ortodônticos , Medição da Dor , Placebos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA