Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Antimicrob Agents Chemother ; : e0154023, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687015

RESUMO

Invasive mucormycosis (IM) is associated with high mortality and morbidity. MAT2203 is an orally administered lipid nanocrystal formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to Rhizopus arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. In R. arrhizus var. delemar-infected mice, 15 mg/kg of MAT2203 qd was as effective as 10 mg/kg of LAMB in prolonging median survival time vs placebo (13.5 and 16.5 days for MAT2203 and LAMB, respectively, vs 9 days for placebo) and enhancing overall survival vs placebo-treated mice (40% and 45% for MAT2203 and LAMB, respectively, vs 0% for placebo). A higher dose of 45 mg/kg of MAT2203 was not well tolerated by mice and showed no benefit over placebo. Similar results were obtained with mice infected with M. circinelloides. Furthermore, while both MAT2203 and LAMB treatment resulted in a significant reduction of ~1.0-2.0log and ~2.0-2.5log in Rhizopus delemar or M. circinelloides lung and brain burden vs placebo mice, respectively, LAMB significantly reduced tissue fungal burden in mice infected with R. delemar vs tissues of mice treated with MAT2203. These results support continued investigation and development of MAT2203 as a novel and oral formulation of amphotericin for the treatment of mucormycosis.

2.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557112

RESUMO

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Assuntos
Anfotericina B , Antifúngicos , Glicosídeos , Mucormicose , Neutropenia , Triterpenos , Animais , Anfotericina B/uso terapêutico , Anfotericina B/farmacologia , Mucormicose/tratamento farmacológico , Camundongos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Neutropenia/tratamento farmacológico , Neutropenia/complicações , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Rhizopus/efeitos dos fármacos , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Mucor/efeitos dos fármacos , Triazóis/uso terapêutico , Triazóis/farmacologia
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045251

RESUMO

Invasive mucormycosis (IM) is associated with high mortality and morbidity and commonly afflicts patients with weakened immune systems. MAT2203 is an orally administered lipid nanocrystal (LNC) formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to R. arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. Treatment with placebo (diluent control), oral MAT2203 administered as BID and QD or intravenous LAMB for 4 days, began 16 h post infection and continued for 7 and 4 days, respectively. Survival through Day +21 and tissue fungal burden of lung or brain in animals euthanized on Day +4 served as a primary and secondary endpoint, respectively. In both infection types, MAT2203 was as effective as LAMB in prolonging median survival time (MST) and enhancing overall survival vs. placebo-treated mice ( P <0.05 by Log-Rank). Furthermore, both MAT2203 and LAMB treatment resulted in significant ∼1.0-1.5-log reduction and ∼2.0-2.2-log in R. delemar or M. circinelloides lung and brain burden, vs. placebo mice, respectively. These results support the potential efficacy of oral MAT2203 as an alternative to LAMB. Continued investigation and development of this novel oral formulation of the amphotericin B for the treatment of mucormycosis is warranted.

4.
Nat Commun ; 14(1): 2052, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045836

RESUMO

Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.


Assuntos
Aspergilose , Micoses , Humanos , Camundongos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Caspofungina/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Modelos Animais de Doenças , Aspergilose/microbiologia , Micoses/tratamento farmacológico , Aspergillus fumigatus , Candida albicans , Farmacorresistência Fúngica
5.
Antimicrob Agents Chemother ; 66(7): e0038022, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35670592

RESUMO

Invasive pulmonary aspergillosis (IPA), invasive mucormycosis (IM), and invasive fusariosis (IF) are associated with high mortality and morbidity. Fosmanogepix (FMGX) is a first-in-class antifungal in clinical development with demonstrated broad-spectrum activity in animal models of infections. We sought to evaluate the benefit of combination therapy of FMGX plus liposomal amphotericin B (L-AMB) in severe delayed-treatment models of murine IPA, IM, and IF. While FMGX was equally as effective as L-AMB in prolonging the survival of mice infected with IPA, IM, or IF, combination therapy was superior to monotherapy in all three models. These findings were validated by greater reductions in the tissue fungal burdens (determined by quantitative PCR) of target organs in all three models versus the burdens in infected vehicle-treated (placebo) or monotherapy-treated mice. In general, histopathological examination of target organs corroborated the findings for fungal tissue burdens among all treatment arms. Our results show that treatment with the combination of FMGX plus L-AMB demonstrated high survival rates and fungal burden reductions in severe animal models of invasive mold infections, at drug exposures in mice similar to those achieved clinically. These encouraging results warrant further investigation of the FMGX-plus-L-AMB combination treatment for severely ill patients with IPA, IM, and IF.


Assuntos
Fusariose , Aspergilose Pulmonar Invasiva , Mucormicose , Anfotericina B/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Fungos , Fusariose/tratamento farmacológico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Camundongos , Mucormicose/tratamento farmacológico
6.
J Fungi (Basel) ; 7(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919611

RESUMO

There is increased concern that the quality, generalizability and reproducibility of biomedical research can be influenced by the sex of animals used. We studied the differences between male and female mice in response to invasive pulmonary mucormycosis including susceptibility to infection, host immune reaction and responses to antifungal therapy. We used diabetic ketoacidotic (DKA) or neutropenic mice infected with either Rhizopus delemar or Mucor circinelloides. The only difference detected was that when DKA mice were infected with M. circinelloides, female mice were more resistant to infection than male mice (median survival time of 5 vs. 2 days for female and male mice, respectively). However, a 100% lethality was detected among infected animals of both sexes. Treatment with either liposomal amphotericin B (L-AMB) or posaconazole (POSA) protected mice from infection and eliminated the difference seen between infected but untreated female and male mice. Treatment with L-AMB consistently outperformed POSA in prolonging survival and reducing tissue fungal burden of DKA and neutropenic mice infected with R. delemar or M. circinelloides, in both mouse sexes. While little difference was detected in cytokine levels among both sexes, mucormycosis infection in the DKA mouse model induced more inflammatory cytokines/chemokines involved in neutrophil (CXCL1) and macrophage (CXCL2) recruitment vs. uninfected mice. As expected, this inflammatory response was reduced in the neutropenic mouse model. Our studies show that there are few differences between female and male DKA or neutropenic mice infected with mucormycosis with no effect on the outcome of treatment or host immune response.

7.
Nat Microbiol ; 6(3): 313-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462434

RESUMO

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.


Assuntos
Mucorales/patogenicidade , Mucormicose/patologia , Micotoxinas/metabolismo , Ricina/metabolismo , Animais , Antitoxinas/imunologia , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Apoptose , Permeabilidade Capilar , Células Cultivadas , Reações Cruzadas , Humanos , Hifas/química , Hifas/patogenicidade , Lectinas/metabolismo , Camundongos , Mucorales/química , Mucorales/classificação , Mucorales/genética , Mucormicose/microbiologia , Mucormicose/prevenção & controle , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/imunologia , Necrose , Interferência de RNA , Rhizopus/química , Rhizopus/genética , Rhizopus/patogenicidade , Proteínas Inativadoras de Ribossomos/metabolismo , Ricina/química , Ricina/imunologia , Virulência/efeitos dos fármacos , Virulência/genética
8.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487760

RESUMO

Mucormycosis, caused by Rhizopus species, is a life-threatening fungal infection that occurs in patients immunocompromised by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy, hematologic malignancies, or severe trauma. Inhaled Rhizopus spores cause pulmonary infections in patients with hematologic malignancies, while patients with DKA are much more prone to rhinoorbital/cerebral mucormycosis. Here, we show that Rhizopus delemar interacts with glucose-regulated protein 78 (GRP78) on nasal epithelial cells via its spore coat protein CotH3 to invade and damage the nasal epithelial cells. Expression of the two proteins is significantly enhanced by high glucose, iron, and ketone body levels (hallmark features of DKA), potentially leading to frequently lethal rhinoorbital/cerebral mucormycosis. In contrast, R. delemar CotH7 recognizes integrin ß1 as a receptor on alveolar epithelial cells, causing the activation of epidermal growth factor receptor (EGFR) and leading to host cell invasion. Anti-integrin ß1 antibodies inhibit R. delemar invasion of alveolar epithelial cells and protect mice from pulmonary mucormycosis. Our results show that R. delemar interacts with different mammalian receptors depending on the host cell type. Susceptibility of patients with DKA primarily to rhinoorbital/cerebral disease can be explained by host factors typically present in DKA and known to upregulate CotH3 and nasal GRP78, thereby trapping the fungal cells within the rhinoorbital milieu, leading to subsequent invasion and damage. Our studies highlight that mucormycosis pathogenesis can potentially be overcome by the development of novel customized therapies targeting niche-specific host receptors or their respective fungal ligands.IMPORTANCE Mucormycosis caused by Rhizopus species is a fungal infection with often fatal prognosis. Inhalation of spores is the major route of entry, with nasal and alveolar epithelial cells among the first cells that encounter the fungi. In patients with hematologic malignancies or those undergoing cytotoxic chemotherapy, Rhizopus causes pulmonary infections. On the other hand, DKA patients predominantly suffer from rhinoorbital/cerebral mucormycosis. The reason for such disparity in disease types by the same fungus is not known. Here, we show that the unique susceptibility of DKA subjects to rhinoorbital/cerebral mucormycosis is likely due to specific interaction between nasal epithelial cell GRP78 and fungal CotH3, the expression of which increases in the presence of host factors present in DKA. In contrast, pulmonary mucormycosis is initiated via interaction of inhaled spores expressing CotH7 with integrin ß1 receptor, which activates EGFR to induce fungal invasion of host cells. These results introduce a plausible explanation for disparate disease manifestations in DKA versus those in hematologic malignancy patients and provide a foundation for development of therapeutic interventions against these lethal forms of mucormycosis.


Assuntos
Células Epiteliais/microbiologia , Proteínas de Choque Térmico/genética , Interações Hospedeiro-Patógeno , Infecções Fúngicas Invasivas/microbiologia , Mucormicose/microbiologia , Receptores de Vitronectina/genética , Rhizopus/patogenicidade , Células A549 , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Animais , Linhagem Celular , Cetoacidose Diabética/complicações , Cetoacidose Diabética/microbiologia , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/patologia , Receptores ErbB/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nariz/citologia , Virulência
9.
Artigo em Inglês | MEDLINE | ID: mdl-32393494

RESUMO

The rise in multidrug-resistant (MDR) organisms portends a serious global threat to the health care system with nearly untreatable infectious diseases, including pneumonia and its often fatal sequelae, acute respiratory distress syndrome (ARDS) and sepsis. Gram-negative bacteria (GNB), including Acinetobacter baumannii, Pseudomonas aeruginosa, and carbapenemase-producing Klebsiella pneumoniae (CPKP), are among the World Health Organization's and National Institutes of Health's high-priority MDR pathogens for targeted development of new therapies. Here, we show that stabilizing the host's vasculature by genetic deletion or pharmacological inhibition of the small GTPase ADP-ribosylation factor 6 (ARF6) increases survival rates of mice infected with A. baumannii, P. aeruginosa, and CPKP. We show that the pharmacological inhibition of ARF6-GTP phenocopies endothelium-specific Arf6 disruption in enhancing the survival of mice with A. baumannii pneumonia, suggesting that inhibition is on target. Finally, we show that the mechanism of protection elicited by these small-molecule inhibitors acts by the restoration of vascular integrity disrupted by GNB lipopolysaccharide (LPS) activation of the TLR4/MyD88/ARNO/ARF6 pathway. By targeting the host's vasculature with small-molecule inhibitors of ARF6 activation, we circumvent microbial drug resistance and provide a potential alternative/adjunctive treatment for emerging and reemerging pathogens.


Assuntos
Acinetobacter baumannii , Infecções por Bactérias Gram-Negativas , Fator 6 de Ribosilação do ADP , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
10.
Front Immunol ; 11: 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153560

RESUMO

Recent years have seen an unprecedented rise in the incidence of multidrug-resistant (MDR) Gram-negative bacteria (GNBs) such as Acinetobacter and Klebsiella species. In view of the shortage of novel drugs in the pipeline, alternative strategies to prevent, and treat infections by GNBs are urgently needed. Previously, we have reported that the Candida albicans hypha-regulated protein Hyr1 shares striking three-dimensional structural homology with cell surface proteins of Acinetobacter baumannii. Moreover, active vaccination with rHyr1p-N or passive immunization with anti-Hyr1p polyclonal antibody protects mice from Acinetobacter infection. In the present study, we use molecular modeling to guide design of monoclonal antibodies (mAbs) generated against Hyr1p and show them to bind to priority surface antigens of Acinetobacter and Klebsiella pneumoniae. The anti-Hyr1 mAbs block damage to primary endothelial cells induced by the bacteria and protect mice from lethal pulmonary infections mediated by A. baumannii or K. pneumoniae. Our current studies emphasize the potential of harnessing Hyr1p mAbs as a cross-kingdom immunotherapeutic strategy against MDR GNBs.


Assuntos
Infecções por Acinetobacter/terapia , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/metabolismo , Candida albicans/imunologia , Proteínas Fúngicas/imunologia , Bactérias Gram-Negativas/imunologia , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Animais , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Imunoglobulinas , Klebsiella pneumoniae/imunologia , Camundongos , Pneumonia/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-32205345

RESUMO

Mucormycosis is a life-threatening infection with high mortality that occurs predominantly in immunocompromised patients. Manogepix (MGX) is a novel antifungal that targets Gwt1, a protein involved in an early step in the conserved glycosylphosphotidyl inositol (GPI) posttranslational modification pathway of surface proteins in eukaryotic cells. Inhibition of fungal inositol acylation by MGX results in pleiotropic effects, including inhibition of maturation of GPI-anchored proteins necessary for growth and virulence. MGX has been previously shown to have in vitro activity against some strains of Mucorales. Here, we assessed the in vivo activity of the prodrug fosmanogepix, currently in clinical development for the treatment of invasive fungal infections, against two Rhizopus arrhizus strains with high (4.0 µg/ml) and low (0.25 µg/ml) minimum effective concentration (MEC) values. In both invasive pulmonary infection models, treatment of mice with 78 mg/kg or 104 mg/kg fosmanogepix, along with 1-aminobenzotriazole to enhance the serum half-life of MGX in mice, significantly increased median survival time and prolonged overall survival by day 21 postinfection compared to placebo. In addition, administration of fosmanogepix resulted in a 1 to 2 log reduction in both lung and brain fungal burden. For the 104 mg/kg fosmanogepix dose, tissue clearance and survival were comparable to clinically relevant doses of isavuconazole (ISA), which is FDA approved for the treatment of mucormycosis. These results support continued development of fosmanogepix as a first-in-class treatment for invasive mucormycosis.


Assuntos
Antifúngicos , Mucormicose , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Isoxazóis , Camundongos , Testes de Sensibilidade Microbiana , Mucormicose/tratamento farmacológico , Rhizopus , Rhizopus oryzae
12.
Artigo em Inglês | MEDLINE | ID: mdl-31818813

RESUMO

There are limited treatment options for immunosuppressed patients with lethal invasive fungal infections due to Fusarium and Scedosporium Manogepix (MGX; APX001A) is a novel antifungal that targets the conserved Gwt1 enzyme required for localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of MGX and the efficacy of the prodrug fosmanogepix (APX001) in immunosuppressed murine models of hematogenously disseminated fusariosis and pulmonary scedosporiosis. The MGX minimum effective concentration (MEC) for Scedosporium isolates was 0.03 µg/ml and ranged from 0.015 to 0.03 µg/ml for Fusarium isolates. In the scedosporiosis model, treatment of mice with 78 mg/kg and 104 mg/kg of body weight fosmanogepix, along with 1-aminobenzotriazole (ABT) to enhance the serum half-life of MGX, significantly increased median survival time versus placebo from 7 days to 13 and 11 days, respectively. Furthermore, administration of 104 mg/kg fosmanogepix resulted in an ∼2-log10 reduction in lung, kidney, or brain conidial equivalents/gram tissue (CE). Similarly, in the fusariosis model, 78 mg/kg and 104 mg/kg fosmanogepix plus ABT enhanced median survival time from 7 days to 12 and 10 days, respectively. A 2- to 3-log10 reduction in kidney and brain CE was observed. In both models, reduction in tissue fungal burden was corroborated with histopathological data, with target organs showing reduced or no abscesses in fosmanogepix-treated mice. Survival and tissue clearance were comparable to a clinically relevant high dose of liposomal amphotericin B (10 to 15 mg/kg). Our data support the continued development of fosmanogepix as a first-in-class treatment for infections caused by these rare molds.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Fusariose/tratamento farmacológico , Fusarium/efeitos dos fármacos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/tratamento farmacológico , Isoxazóis/farmacologia , Scedosporium/efeitos dos fármacos , Aminopiridinas/sangue , Aminopiridinas/farmacocinética , Animais , Antifúngicos/sangue , Antifúngicos/farmacocinética , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/microbiologia , Esquema de Medicação , Combinação de Medicamentos , Fusariose/imunologia , Fusariose/microbiologia , Fusariose/mortalidade , Fusarium/crescimento & desenvolvimento , Fusarium/imunologia , Meia-Vida , Humanos , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/microbiologia , Infecções Fúngicas Invasivas/mortalidade , Isoxazóis/sangue , Isoxazóis/farmacocinética , Rim/efeitos dos fármacos , Rim/imunologia , Rim/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Pró-Fármacos , Scedosporium/crescimento & desenvolvimento , Scedosporium/imunologia , Análise de Sobrevida , Triazóis/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31685475

RESUMO

Galactomannan (GM) detection in biological samples has been shown to predict therapeutic response by azoles and polyenes. In a murine invasive pulmonary aspergillosis model, fosmanogepix or posaconazole treatment resulted in an ∼6- to 7-log reduction in conidial equivalents (CE)/g lung tissue after 96 h versus placebo. Changes in GM levels in BAL fluid and serum mirrored reductions in lung CE, with significant decreases seen after 96 h or 72 h for fosmanogepix or posaconazole, respectively (P < 0.02).


Assuntos
Antifúngicos/uso terapêutico , Biomarcadores/metabolismo , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/metabolismo , Mananas/metabolismo , Animais , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Galactose/análogos & derivados , Hospedeiro Imunocomprometido , Pulmão/microbiologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Triazóis/uso terapêutico
14.
Sci Adv ; 5(6): eaaw1327, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206021

RESUMO

Mucorales are fungal pathogens that cause mucormycosis, a lethal angioinvasive disease. Previously, we demonstrated that Rhizopus, the most common cause of mucormycosis, invades endothelial cells by binding of its CotH proteins to the host receptor GRP78. Loss of CotH3 renders the fungus noninvasive and attenuates Rhizopus virulence in mice. Here, we demonstrate that polyclonal antibodies raised against peptides of CotH3 protected diabetic ketoacidotic (DKA) and neutropenic mice from mucormycosis compared to mice treated with control preimmune serum. Passive immunization with anti-CotH3 antibodies enhanced neutrophil inlfux and triggered Fc receptor-mediated enhanced opsonophagocytosis killing of Rhizopus delemar. Monoclonal antibodies raised against the CotH3 peptide also protected immunosuppressed mice from mucormycosis caused by R. delemar and other Mucorales and acted synergistically with antifungal drugs in protecting DKA mice from R. delemar infection. These data identify anti-CotH3 antibodies as a promising adjunctive immunotherapeutic option against a deadly disease that often poses a therapeutic challenge.


Assuntos
Anticorpos Antifúngicos/farmacologia , Anticorpos Monoclonais/farmacologia , Cetoacidose Diabética/terapia , Mucormicose/terapia , Neutropenia/terapia , Rhizopus/efeitos dos fármacos , Animais , Anticorpos Antifúngicos/biossíntese , Anticorpos Monoclonais/biossíntese , Antifúngicos/farmacologia , Terapia Combinada , Cetoacidose Diabética/imunologia , Cetoacidose Diabética/microbiologia , Cetoacidose Diabética/mortalidade , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização Passiva/métodos , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mucormicose/imunologia , Mucormicose/microbiologia , Mucormicose/mortalidade , Neutropenia/imunologia , Neutropenia/microbiologia , Neutropenia/mortalidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Rhizopus/patogenicidade , Análise de Sobrevida , Virulência
15.
Artigo em Inglês | MEDLINE | ID: mdl-30455236

RESUMO

Invasive pulmonary aspergillosis (IPA) due to Aspergillus fumigatus is a serious fungal infection in the immunosuppressed patient population. Despite the introduction of new antifungal agents, mortality rates remain high, and new treatments are needed. The novel antifungal APX001A targets the conserved Gwt1 enzyme required for the localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of APX001A against A. fumigatus and the in vivo activity of its prodrug APX001 in an immunosuppressed mouse model of IPA. APX001A inhibited the growth of A. fumigatus with a minimum effective concentration of 0.03 µg/ml. The use of 50 mg/kg 1-aminobenzotriazole (ABT), a suicide inhibitor of cytochrome P450 enzymes, enhanced APX001A exposures (area under the time-concentration curve [AUC]) 16- to 18-fold and enhanced serum half-life from ∼1 to 9 h, more closely mimicking human pharmacokinetics. We evaluated the efficacy of APX001 (with ABT) in treating murine IPA compared to posaconazole treatment. Treatment of mice with 78 mg/kg once daily (QD), 78 mg/kg twice daily, or 104 mg/kg QD APX001 significantly enhanced the median survival time and prolonged day 21 postinfection overall survival compared to the placebo. Furthermore, administration of APX001 resulted in a significant reduction in lung fungal burden (4.2 to 7.6 log10 conidial equivalents/g of tissue) versus the untreated control and resolved the infection, as judged by histopathological examination. The observed survival and tissue clearance were comparable to a clinically relevant posaconazole dose. These results warrant the continued development of APX001 as a broad-spectrum, first-in-class treatment of invasive fungal infections.


Assuntos
Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Animais , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hospedeiro Imunocomprometido , Aspergilose Pulmonar Invasiva/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Triazóis/uso terapêutico
16.
mBio ; 9(4)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108171

RESUMO

Mucormycosis is a life-threatening, invasive fungal infection that is caused by various species belonging to the order Mucorales. Rhizopus species are the most common cause of the disease, responsible for approximately 70% of all cases of mucormycosis. During pulmonary mucormycosis, inhaled Rhizopus spores must adhere to and invade airway epithelial cells in order to establish infection. The molecular mechanisms that govern this interaction are poorly understood. We performed an unbiased survey of the host transcriptional response during early stages of Rhizopus arrhizus var. delemar (R. delemar) infection in a murine model of pulmonary mucormycosis using transcriptome sequencing (RNA-seq). Network analysis revealed activation of the host's epidermal growth factor receptor (EGFR) signaling. Consistent with the RNA-seq results, EGFR became phosphorylated upon in vitro infection of human alveolar epithelial cells with several members of the Mucorales, and this phosphorylated, activated form of EGFR colocalized with R. delemar spores. Inhibition of EGFR signaling with cetuximab or gefitinib, specific FDA-approved inhibitors of EGFR, significantly reduced the ability of R. delemar to invade and damage airway epithelial cells. Furthermore, gefitinib treatment significantly prolonged survival of mice with pulmonary mucormycosis, reduced tissue fungal burden, and attenuated the activation of EGFR in response to pulmonary mucormycosis. These results indicate EGFR represents a novel host target to block invasion of alveolar epithelial cells by R. delemar, and inhibition of EGFR signaling provides a novel approach for treating mucormycosis by repurposing an FDA-approved drug.IMPORTANCE Mucormycosis is an increasingly common, highly lethal fungal infection with very limited treatment options. Using a combination of in vivo animal models, transcriptomics, cell biology, and pharmacological approaches, we have demonstrated that Mucorales fungi activate EGFR signaling to induce fungal uptake into airway epithelial cells. Inhibition of EGFR signaling with existing FDA-approved drugs significantly increased survival following R. arrhizus var. delemar infection in mice. This study enhances our understanding of how Mucorales fungi invade host cells during the establishment of pulmonary mucormycosis and provides a proof-of-concept for the repurposing of FDA-approved drugs that target EGFR function.


Assuntos
Receptores ErbB/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Mucormicose/prevenção & controle , Células A549 , Animais , Cetuximab/farmacologia , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mucormicose/microbiologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Rhizopus/efeitos dos fármacos , Rhizopus/patogenicidade , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
17.
J Clin Microbiol ; 56(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30068535

RESUMO

Mucormycosis is an aggressive, life-threatening infection caused by fungi in the order Mucorales. The current diagnosis of mucormycosis relies on mycological cultures, radiology and histopathology. These methods lack sensitivity and are most definitive later in the course of infection, resulting in the prevention of timely intervention. PCR-based approaches have shown promising potential in rapidly diagnosing mucormycosis. The spore coating protein homolog encoding CotH genes are uniquely and universally present among Mucorales. Thus, CotH genes are potential targets for the rapid diagnosis of mucormycosis. We infected mice with different Mucorales known to cause human mucormycosis and investigated whether CotH could be PCR amplified from biological fluids. Uninfected mice and those with aspergillosis were used to determine the specificity of the assay. CotH was detected as early as 24 h postinfection in plasma, urine, and bronchoalveolar lavage (BAL) samples from mice infected intratracheally with Rhizopus delemar, Rhizopus oryzae, Mucor circinelloides, Lichtheimia corymbifera, or Cunninghamella bertholletiae but not from samples taken from uninfected mice or mice infected with Aspergillus fumigatus Detection of CotH from urine samples was more reliable than from plasma or BAL fluid. Using the receiver operating characteristic method, the sensitivity and the specificity of the assay were found to be 90 and 100%, respectively. Finally, CotH was PCR amplified from urine samples of patients with proven mucormycosis. Thus, PCR amplification of CotH is a promising target for the development of a reliable, sensitive, and simple method of early diagnosis of mucormycosis.


Assuntos
Mucorales/isolamento & purificação , Mucormicose/diagnóstico , Reação em Cadeia da Polimerase , Animais , Aspergilose/diagnóstico , Aspergilose/genética , DNA Fúngico/análise , DNA Fúngico/genética , Proteínas Fúngicas/genética , Humanos , Camundongos , Mucorales/genética , Mucormicose/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
PLoS Pathog ; 14(5): e1007056, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746596

RESUMO

Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N) protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB) and outer membrane protein A (OmpA). The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5) confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.


Assuntos
Proteínas Fúngicas/imunologia , Proteínas Fúngicas/farmacologia , Acinetobacter/efeitos dos fármacos , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/metabolismo , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/imunologia , Bactérias/imunologia , Infecções Bacterianas , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/imunologia , Biofilmes , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Imunização Passiva , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
19.
Artigo em Inglês | MEDLINE | ID: mdl-28652241

RESUMO

We compared prophylactic or continuous therapy with the investigational drug VT-1161 to that with posaconazole in treating murine mucormycosis due to Rhizopus arrhizus var. arrhizus In the prophylaxis studies, only VT-1161 resulted in improved survival and lowered tissue fungal burden of immunosuppressed infected mice. In the continuous therapy, VT-1161 outperformed posaconazole in prolonging mouse survival time despite its comparable effect in lowering tissue fungal burden. These results support the further development of VT-1161 against mucormycosis.


Assuntos
Antifúngicos/farmacologia , Substâncias Protetoras/farmacologia , Piridinas/farmacologia , Rhizopus/efeitos dos fármacos , Tetrazóis/farmacologia , Animais , Hospedeiro Imunocomprometido , Masculino , Camundongos , Testes de Sensibilidade Microbiana/métodos , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Triazóis/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28264840

RESUMO

We assessed prophylactic or continuous therapy of isavuconazole, posaconazole, or voriconazole in treating pulmonary murine mucormycosis. In the prophylaxis studies, only isavuconazole treatment resulted in significantly improved survival and lowered tissue fungal burden of immunosuppressed mice infected with Rhizopus delemar. In the continuous treatment studies, isavuconazole and posaconazole, but not voriconazole, equally prolonged survival time and lowered tissue fungal burden compared to placebo-treated mice. These results support the use of isavuconazole and posaconazole in prophylaxis treatment.


Assuntos
Antifúngicos/uso terapêutico , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/prevenção & controle , Mucormicose/tratamento farmacológico , Mucormicose/prevenção & controle , Nitrilas/uso terapêutico , Piridinas/uso terapêutico , Triazóis/uso terapêutico , Voriconazol/uso terapêutico , Animais , Antibioticoprofilaxia/métodos , Modelos Animais de Doenças , Terapia de Imunossupressão , Camundongos , Rhizopus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA