Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295627

RESUMO

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Assuntos
Ceratopogonidae , Aprendizado de Máquina , Dinâmica Populacional , Animais , Ceratopogonidae/virologia , Clima , Ecossistema , Europa (Continente) , Fazendas , Insetos Vetores/virologia , Modelos Teóricos , Estações do Ano
2.
Parasit Vectors ; 11(1): 608, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497537

RESUMO

BACKGROUND: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. METHODS: We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. RESULTS: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. CONCLUSIONS: The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain.


Assuntos
Ceratopogonidae/fisiologia , Distribuição Animal , Animais , Ceratopogonidae/classificação , Ceratopogonidae/genética , Ecossistema , Meio Ambiente , Europa (Continente) , Feminino , Masculino , Dinâmica Populacional , Estações do Ano , Fatores de Tempo
3.
Parasit Vectors ; 11(1): 462, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103828

RESUMO

BACKGROUND: The prime significance of species belonging to the genus Culicoides Latreille, 1809 (Diptera: Ceratopogonidae) is their ability to transmit viruses such as bluetongue virus (BTV) to wild and domestic ruminants. Prior to 1998, BTV was considered exotic in Europe, but according to recent history of its outbreaks, it has become endemic in southern and eastern European countries circulating beyond its expected historical limits, into the Balkan region. The wind-borne long-distance dispersal of Culicoides spp. over water bodies and local spreading between farms emphasize the necessity of filling in the information gaps regarding vector species distribution. In most Balkan countries, data on Culicoides fauna and species distribution are lacking, or information is old and scarce. RESULTS: During this study, 8586 specimens belonging to 41 species were collected. We present the first faunistic data on Culicoides species in the former Yugoslav Republic of Macedonia (FYROM), Kosovo, Montenegro and Serbia. For other countries (Bosnia and Herzegovina, Bulgaria and Croatia), all historical records were compiled for the first time and then expanded with our findings to various extents. In all countries, confirmed or suspected BTV vector species belonging to the subgenera Avaritia and Culicoides were collected. The total number of species sampled during our field collections was 20 in Bosnia and Herzegovina (15 new records), 10 in Bulgaria (2 new records), 10 in Croatia (5 new records), 13 in FYROM, 9 in Kosovo, 15 in Montenegro, and 28 in Serbia. Of these, 14 species were registered for the first time in this part of the Balkans. CONCLUSIONS: This paper provides the first data about Culicoides fauna in FYROM, Kosovo, Montenegro and Serbia, as well as new records and an update on the checklists for Bosnia and Herzegovina, Bulgaria and Croatia. These findings provide preliminary insights into the routes of BTV introduction and spreading within the Balkans, and present a valuable contribution to further research related to Culicoides-borne diseases in Europe.


Assuntos
Distribuição Animal , Ceratopogonidae/classificação , Animais , Ceratopogonidae/fisiologia , Europa Oriental
4.
Parasit Vectors ; 11(1): 341, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884209

RESUMO

BACKGROUND: In Senegal, the last epidemic of African horse sickness (AHS) occurred in 2007. The western part of the country (the Niayes area) concentrates modern farms with exotic horses of high value and was highly affected during the 2007 outbreak that has started in the area. Several studies were initiated in the Niayes area in order to better characterize Culicoides diversity, ecology and the impact of environmental and climatic data on dynamics of proven and suspected vectors. The aims of this study are to better understand the spatial distribution and diversity of Culicoides in Senegal and to map their abundance throughout the country. METHODS: Culicoides data were obtained through a nationwide trapping campaign organized in 2012. Two successive collection nights were carried out in 96 sites in 12 (of 14) regions of Senegal at the end of the rainy season (between September and October) using OVI (Onderstepoort Veterinary Institute) light traps. Three different modeling approaches were compared: the first consists in a spatial interpolation by ordinary kriging of Culicoides abundance data. The two others consist in analyzing the relation between Culicoides abundance and environmental and climatic data to model abundance and investigate the environmental suitability; and were carried out by implementing generalized linear models and random forest models. RESULTS: A total of 1,373,929 specimens of the genus Culicoides belonging to at least 32 different species were collected in 96 sites during the survey. According to the RF (random forest) models which provided better estimates of abundances than Generalized Linear Models (GLM) models, environmental and climatic variables that influence species abundance were identified. Culicoides imicola, C. enderleini and C. miombo were mostly driven by average rainfall and minimum and maximum normalized difference vegetation index. Abundance of C. oxystoma was mostly determined by average rainfall and day temperature. Culicoides bolitinos had a particular trend; the environmental and climatic variables above had a lesser impact on its abundance. RF model prediction maps for the first four species showed high abundance in southern Senegal and in the groundnut basin area, whereas C. bolitinos was present in southern Senegal, but in much lower abundance. CONCLUSIONS: Environmental and climatic variables of importance that influence the spatial distribution of species abundance were identified. It is now crucial to evaluate the vector competence of major species and then combine the vector densities with densities of horses to quantify the risk of transmission of AHS virus across the country.


Assuntos
Doença Equina Africana/transmissão , Bluetongue/transmissão , Ceratopogonidae/fisiologia , Doenças dos Cavalos/transmissão , Insetos Vetores/fisiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/isolamento & purificação , Vírus da Doença Equina Africana/fisiologia , Distribuição Animal , Animais , Bluetongue/epidemiologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Vírus Bluetongue/fisiologia , Ceratopogonidae/virologia , Ecossistema , Cavalos , Insetos Vetores/virologia , Modelos Estatísticos , Estações do Ano , Senegal/epidemiologia
5.
Parasit Vectors ; 11(1): 112, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482593

RESUMO

BACKGROUND: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distribution and abundance. The aim of this analysis was to identify and quantify major spatial patterns and temporal trends in the distribution and seasonal variation of observed Culicoides abundance in nine countries in Europe. METHODS: We gathered existing Culicoides data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. In total, 31,429 Culicoides trap collections were available from 904 ruminant farms across these countries between 2007 and 2013. RESULTS: The Obsoletus ensemble was distributed widely in Europe and accounted for 83% of all 8,842,998 Culicoides specimens in the dataset, with the highest mean monthly abundance recorded in France, Germany and southern Norway. The Pulicaris ensemble accounted for only 12% of the specimens and had a relatively southerly and easterly spatial distribution compared to the Obsoletus ensemble. Culicoides imicola Kieffer was only found in Spain and the southernmost part of France. There was a clear spatial trend in the accumulated annual abundance from southern to northern Europe, with the Obsoletus ensemble steadily increasing from 4000 per year in southern Europe to 500,000 in Scandinavia. The Pulicaris ensemble showed a very different pattern, with an increase in the accumulated annual abundance from 1600 in Spain, peaking at 41,000 in northern Germany and then decreasing again toward northern latitudes. For the two species ensembles and C. imicola, the season began between January and April, with later start dates and increasingly shorter vector seasons at more northerly latitudes. CONCLUSION: We present the first maps of seasonal Culicoides abundance in large parts of Europe covering a gradient from southern Spain to northern Scandinavia. The identified temporal trends and spatial patterns are useful for planning the allocation of resources for international prevention and surveillance programmes in the European Union.


Assuntos
Ceratopogonidae , Insetos Vetores , Doença Equina Africana/transmissão , Animais , Bluetongue/transmissão , Ceratopogonidae/classificação , Europa (Continente) , Fazendas , Geografia , Insetos Vetores/classificação , Densidade Demográfica , Dinâmica Populacional , Ruminantes , Estações do Ano , Especificidade da Espécie
6.
Sci Rep ; 7(1): 250, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325914

RESUMO

Caves house pathogenic microorganisms, some of which are transmitted by blood-sucking arthropods. In Africa, previous studies identified mosquitoes, sand flies and biting midges as the main potential vectors of cave-dwelling pathogens. However, to understand their involvement in pathogen spillover, it is crucial to characterize their diversity, community composition and dynamics. Using CDC light traps, we collected hematophagous Diptera in six caves of Gabon during one-shot or longitudinal sampling, and investigated their species diversity and dynamics in relation with external rainfall. Overall, we identified 68 species of mosquitoes, sand flies and biting midges, including 45 new records for Gabon. The dominant species were: Uranotaenia nigromaculata, Anopheles smithii s.l., Culex. rima group and Culex quasiguiarti for mosquitoes, Spelaeophlebotomus gigas and Spelaeomyia emilii for sand flies and the Culicoides trifasciellus group and Culicoides fulvithorax for biting midges. The survey revealed that species assemblages were cave-specific and included mainly troglophilous and trogloxenous species. Both diversity and abundance varied according to the cave and sampling time, and were significantly associated with rainfall. These associations were modulated by the cave specific environmental conditions. Moreover, the presence of trogloxenous and troglophilous species could be of high significance for pathogen transfers between cave and epigeous hosts, including humans.


Assuntos
Cavernas , Ceratopogonidae/crescimento & desenvolvimento , Culicidae/crescimento & desenvolvimento , Insetos Vetores/classificação , Insetos Vetores/crescimento & desenvolvimento , Psychodidae/crescimento & desenvolvimento , Animais , Biodiversidade , Ceratopogonidae/classificação , Culicidae/classificação , Dípteros , Gabão , Estudos Longitudinais , Psychodidae/classificação
7.
Parasit Vectors ; 9: 141, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26968517

RESUMO

BACKGROUND: Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread. METHODS: Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012). RESULTS: Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge. CONCLUSIONS: Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.


Assuntos
Ceratopogonidae/classificação , Ceratopogonidae/genética , Variação Genética , Animais , Entomologia , França , Genética Populacional , Genótipo , Técnicas de Genotipagem , Repetições de Microssatélites , Dinâmica Populacional , Análise Espaço-Temporal
8.
J Med Entomol ; 53(1): 212-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26487248

RESUMO

Biting midges of the genus Culicoides transmit pathogens of veterinary importance such as bluetongue virus (Reoviridae: Orbivirus). The saliva of Culicoides is known to contain bioactive molecules including peptides and proteins with vasodilatory and immunomodulative properties. In this study, we detected activity of enzyme hyaluronidase in six Culicoides species that commonly occur in Europe and that are putative vectors of arboviruses. Hyaluronidase was present in all species studied, although its molecular size, sensitivity to SDS, and substrate specificity differed between species. Further studies on the potential effect of hyaluronidase activity on the vector competence of Culicoides species for arboviruses would be beneficial.


Assuntos
Ceratopogonidae/enzimologia , Hialuronoglucosaminidase/metabolismo , Insetos Vetores/enzimologia , Animais , Infecções por Arbovirus/transmissão , Saliva/enzimologia
9.
Parasit Vectors ; 8: 439, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26310789

RESUMO

BACKGROUND: Culicoides biting midges are biological vectors of internationally important arboviruses of livestock and equines. Insecticides are often employed against Culicoides as a part of vector control measures, but systematic assessments of their efficacy have rarely been attempted. The objective of the present study is to determine baseline susceptibility of multiple Culicoides vector species and populations in Europe and Africa to the most commonly used insecticide active ingredients. Six active ingredients are tested: three that are based on synthetic pyrethroids (alpha-cypermethrin, deltamethrin and permethrin) and three on organophosphates (phoxim, diazinon and chlorpyrifos-methyl). METHODS: Susceptibility tests were conducted on 29,064 field-collected individuals of Culicoides obsoletus Meigen, Culicoides imicola Kieffer and a laboratory-reared Culicoides nubeculosus Meigen strain using a modified World Health Organization assay. Populations of Culicoides were tested from seven locations in four different countries (France, Spain, Senegal and South Africa) and at least four concentrations of laboratory grade active ingredients were assessed for each population. RESULTS: The study revealed that insecticide susceptibility varied at both a species and population level, but that broad conclusions could be drawn regarding the efficacy of active ingredients. Synthetic pyrethroid insecticides were found to inflict greater mortality than organophosphate active ingredients and the colony strain of C. nubeculosus was significantly more susceptible than field populations. Among the synthetic pyrethroids, deltamethrin was found to be the most toxic active ingredient for all species and populations. CONCLUSIONS: The data presented represent the first parallel and systematic assessment of Culicoides insecticide susceptibility across several countries. As such, they are an important baseline reference to monitor the susceptibility status of Culicoides to current insecticides and also to assess the toxicity of new active ingredients with practical implications for vector control strategies.


Assuntos
Ceratopogonidae/classificação , Ceratopogonidae/efeitos dos fármacos , Inseticidas/farmacologia , África , Animais , Bioensaio , Europa (Continente) , Insetos Vetores/classificação , Insetos Vetores/efeitos dos fármacos , Organofosfatos/farmacologia , Testes de Sensibilidade Parasitária , Piretrinas/farmacologia , Análise de Sobrevida
10.
PLoS One ; 10(6): e0131021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121048

RESUMO

In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.


Assuntos
Ceratopogonidae/fisiologia , Modelos Biológicos , Animais , Feminino , Análise Multivariada , Reprodutibilidade dos Testes , Senegal , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA