Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 42(12): 1405-1423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897520

RESUMO

In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 ß-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.


Assuntos
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Percepção de Quorum , Farmacorresistência Bacteriana Múltipla/genética
2.
Microorganisms ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375100

RESUMO

Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.

3.
J Exp Med ; 220(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688957

RESUMO

Gut microbiota contain communities of viruses, bacteria, fungi, and Eukarya, and live as biofilms. In health, these biofilms adhere to the intestinal mucus surface without contacting the epithelium. Disruptions to the equilibrium between these biofilms and the host may create invasive pathobionts from these commensal communities and contribute to disease pathogenesis. Environmental factors appear to dominate over genetics in determining the shifts in microbiota populations and function, including when comparing microbiota between low-income and industrialized countries. The observations discussed herein carry enormous potential for the development of novel therapies targeting phenotype in microbiota dysbiosis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Biofilmes , Bactérias , Simbiose , Disbiose/microbiologia
4.
JAMA Intern Med ; 183(3): 191-200, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689215

RESUMO

Importance: Infection transmission following endoscopic retrograde cholangiopancreatography (ERCP) can occur due to persistent contamination of duodenoscopes despite high-level disinfection to completely eliminate microorganisms on the instrument. Objective: To determine (1) contamination rates after high-level disinfection and (2) technical performance of duodenoscopes with disposable elevator caps compared with those with standard designs. Design, Setting, and Participants: In this parallel-arm multicenter randomized clinical trial at 2 tertiary ERCP centers in Canada, all patients 18 years and older and undergoing ERCP for any indication were eligible. Intervention: The intervention was use of duodenoscopes with disposable elevator caps compared with duodenoscopes with a standard design. Main Outcomes and Measures: Coprimary outcomes were persistent microbial contamination of the duodenoscope elevator or channel, defined as growth of at least 10 colony-forming units of any organism or any growth of gram-negative bacteria following high-level disinfection (superiority outcome), and technical success of ERCP according to a priori criteria (noninferiority outcome with an a priori noninferiority margin of 7%), assessed by blinded reviewers. Results: From December 2019 to February 2022, 518 patients were enrolled (259 disposable elevator cap duodenoscopes, 259 standard duodenoscopes). Patients had a mean (SD) age of 60.7 (17.0) years and 258 (49.8%) were female. No significant differences were observed between study groups, including in ERCP difficulty. Persistent microbial contamination was detected in 11.2% (24 of 214) of standard duodenoscopes and 3.8% (8 of 208) of disposable elevator cap duodenoscopes (P = .004), corresponding to a relative risk of 0.34 (95% CI, 0.16-0.75) and number needed to treat of 13.6 (95% CI, 8.1-42.7) to avoid persistent contamination. Technical success using the disposable cap scope was noninferior to that of the standard scope (94.6% vs 90.7%, P = .13). There were no differences between study groups in adverse events and other secondary outcomes. Conclusions and Relevance: In this randomized clinical trial, disposable elevator cap duodenoscopes exhibited reduced contamination following high-level disinfection compared with standard scope designs, without affecting the technical performance and safety of ERCP. Trial Registration: ClinicalTrials.gov Identifier: NCT04040504.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Duodenoscópios , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Duodenoscópios/efeitos adversos , Duodenoscópios/microbiologia , Colangiopancreatografia Retrógrada Endoscópica/instrumentação , Elevadores e Escadas Rolantes , Desinfecção , Coleta de Dados
5.
Biofilm ; 4: 100095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478961

RESUMO

Host immune cells and clinical interventions often fail to eradicate biofilm-mediated infections, resulting in chronic inflammation. The role of the biofilm three-dimensional structure in this tolerant phenotype has been studied extensively; however, the impact of small molecules released from biofilm-bacteria in modulating host immune function is less well understood. A model of mixed-species biofilms composed of Fusobacterium necrophorum and Porphyromonas levii was developed to evaluate bovine neutrophil responses to bioactive molecules released from either biofilm or planktonic bacteria. We hypothesized that different soluble extracellular factors (ECFs) would be released from planktonic and biofilm bacteria, resulting in altered neutrophil function. Neutrophils exposed to ECFs from planktonic bacteria showed significantly elevated levels of reactive oxygen species (ROS). In contrast, biofilm components from these same species of bacteria failed to induce such a response. Size-exclusion filtration of ECFs revealed that the bioactive molecule causing neutrophil ROS responses was below 3 kDa. Intensive heat, nuclease, lipase, or protease treatments of the <3 kDa fractions did not alter neutrophil functional responses. Protoporphyrin IX (PPIX) is an important heme precursor and growth requirement for many anaerobes. Porphyromonas species can accumulate environmental PPIX at the cell surface as a strategy to protect the bacteria from oxidative stress and we investigated the direct interaction of bovine neutrophils with PPIX. In the present study, evidence suggests that the accumulation of protoporphyrin in these dual-species biofilm ECFs attenuates neutrophil ROS production and chemotaxis. The diminished neutrophil response to biofilm ECFs via the action of PPIX may represent a biofilm immune-evasion strategy that could assist in explaining the ineffectual host clearance of biofilm-mediated infections involving these bacteria.

6.
Int J Parasitol ; 52(5): 285-292, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077730

RESUMO

Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.


Assuntos
Cisteína Proteases , Giardia lamblia , Mucinas , Receptor PAR-2 , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Expressão Gênica , Giardia lamblia/enzimologia , Giardia lamblia/genética , Células Caliciformes/metabolismo , Humanos , Mucinas/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
7.
Antioxid Redox Signal ; 36(4-6): 211-219, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33691464

RESUMO

Significance: Hydrogen sulfide (H2S), an important regulator of physiology and health, helps resolve inflammation and promotes tissue repair in the gastrointestinal tract. Recent Advances: Gut microbiota live as a multispecies biofilm in close interaction with the upper mucus layer lining the epithelium. The relative abundance, spatial organization, and function of these microorganisms affect a broad range of health outcomes. This article provides a state-of-the-art review of our understanding of the cross talk between H2S, the gut microbiota, and health. H2S can have toxic or therapeutic effects, depending on its concentration and source. When produced at excessive concentrations by local microbiota, H2S may cause mucus disruption and inflammation and contribute to development of cancer. In contrast, low levels of endogenous or exogenous H2S directly stabilize mucus layers, prevent fragmentation and adherence of the microbiota biofilm to the epithelium, inhibit the release of invasive pathobionts, and help resolve inflammation and tissue injury. Although scarce, research findings suggest that dietary H2S obtained from plants or ingestion of the H2S precursor, L-cysteine, may also modulate the abundance and function of microbiota. Critical Issues: A critical issue is the lack of understanding of the metagenomic, transcriptomic, and proteomic alterations that characterize the interactions between H2S and gut microbiota to shape health outcomes. Future Directions: The ambivalent roles of H2S in the gut offer a fertile ground for research on such critical issues. The findings will improve our understanding of how H2S modulates the microbiota to affect body function and will help identify novel therapeutic strategies. Antioxid. Redox Signal. 36, 211-219.


Assuntos
Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Microbiota , Trato Gastrointestinal , Sulfeto de Hidrogênio/farmacologia , Proteômica
8.
Pathogens ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578195

RESUMO

Enteric tuft cells are chemosensory epithelial cells gaining attention in the field of host-parasite interactions. Expressing a repertoire of chemosensing receptors and mediators, these cells have the potential to detect lumen-dwelling helminth and protozoan parasites and coordinate epithelial, immune, and neuronal cell defenses against them. This review highlights the versatility of enteric tuft cells and sub-types thereof, showcasing nuances of tuft cell responses to different parasites, with a focus on helminths reflecting the current state of the field. The role of enteric tuft cells in irritable bowel syndrome, inflammatory bowel disease and intestinal viral infection is assessed in the context of concomitant infection with parasites. Finally, the review presents pertinent questions germane to understanding the enteric tuft cell and its role in enteric parasitic infections. There is much to be done to fully elucidate the response of this intriguing cell type to parasitic-infection and there is negligible data on the biology of the human enteric tuft cell-a glaring gap in knowledge that must be filled.

9.
Sci Rep ; 11(1): 18842, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552170

RESUMO

Exogenous factors that may influence the pathophysiology of Giardia infection remain incompletely understood. We have investigated the role of dietary fat in the pathogenesis of Giardia infection. Male 3 to 4-week-old C57BL/6 mice were fed either a low fat (LF) or a high fat (HF) diet for 12 days and challenged with G. duodenalis. In infected animals, the trophozoite burden was higher in HF + Giardia mice compared to the LF + Giardia group at day 7 post infection. Fatty acids exerted direct pro-growth effects on Giardia trophozoites. Analysis of disease parameters showed that HF + Giardia mice exhibited more mucosal infiltration by inflammatory cells, decreased villus/crypt ratios, goblet cell hyperplasia, mucus disruption, increased gut motility, and elevated fecal water content compared with LF + Giardia. HF diet-dependent exacerbation of Giardia-induced goblet cell hyperplasia was associated with elevated Atoh1 and Muc2 gene expression. Gut microbiota analysis revealed that the HF diet alone induces a taxonomic shift. HF + Giardia mice exhibited microbiota dysbiosis characterized by an increase of Firmicutes and a decrease of Bacteroidetes and significant changes in α- and ß-diversity metrics. Taken together, the findings suggest that a HF diet exacerbates the outcome of Giardia infection. The data demonstrate that elevated dietary fat represents an important exogenous factor promoting the pathophysiology of giardiasis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Microbioma Gastrointestinal/fisiologia , Giardíase/etiologia , Inflamação/etiologia , Animais , Citocinas/sangue , Dieta com Restrição de Gorduras/efeitos adversos , Ácidos Graxos/efeitos adversos , Giardia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/antagonistas & inibidores , Trofozoítos
10.
Cancers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924378

RESUMO

AMHRII, the anti-Müllerian hormone receptor, is selectively expressed in normal sexual organs but is also re-expressed in gynecologic cancers. Hence, we developed murlentamab, a humanized glyco-engineered anti-AMHRII monoclonal antibody currently in clinical trial. Low-fucosylated antibodies are known to increase the antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) potency of effector cells, but some preliminary results suggest a more global murlentamab-dependent activation of the immune system. In this context, we demonstrate here that the murlentamab opsonization of AMHRII-expressing ovarian tumor cells, in the presence of unstimulated- or tumor-associated macrophage (TAM)-like macrophages, significantly promotes macrophage-mediated ADCC and shifts the whole microenvironment towards a pro-inflammatory and anti-tumoral status, thus triggering anti-tumor activity. We also report that murlentamab orients both unstimulated- and TAM-like macrophages to an M1-like phenotype characterized by a strong expression of co-stimulation markers, pro-inflammatory cytokines and chemokines, favoring T cell recruitment and activation. Moreover, we show that murlentamab treatment shifts CD4+ Th1/Th2 balance towards a Th1 response and activates CD8+ T cells. Altogether, these results suggest that murlentamab, through naïve macrophage orientation and TAM reprogrammation, stimulates the anti-tumor adaptive immune response. Those mechanisms might contribute to the sustained clinical benefit observed in advanced cancer patients treated with murlentamab. Finally, the enhanced murlentamab activity in combination with pembrolizumab opens new therapeutic perspectives.

11.
J Inflamm Res ; 14: 1195-1206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833542

RESUMO

BACKGROUND: Covid-19 infection starts in the nasal cavity when viral S1 and RBD proteins bind to the host cell ACE2 receptors, the virus multiplies, causes cell lysis, and enters the circulation. This triggers a strong cytokine release and inflammation of the nasal mucosa. A multitarget approach of cleaning the nasal mucosa and suppressing chances of nasal and systemic inflammation should minimize severe respiratory consequences. Unfortunately, no such treatments are yet available. METHODS: We describe the conception of an osmotic polymeric film using an in vitro nasal mucosa mimicking model, containing polymers to neutralize Covid-19 specific viral S1, RBD proteins and selected proinflammatory cytokines. RESULTS: The filmogen barrier forms a stable and osmotic film on the nasal mucosa. Hypotonic liquid exudation from the nasal surface detaches and drains the inflammatory cytokines and other contaminants towards the film where selected polymers bind and neutralize SARS-CoV-2 spike S1 and RBD protein as well as Covid-19 disease-specific key pro-inflammatory IL-6, TNF-α, IL-10, IL-13, and GM-CSF cytokines. CONCLUSION: Minimizing the nasal surface concentration of pro-inflammatory cytokines and viruses should help nasal mucosa repair and avoid immune stress. This nearly instant, simple, scientific, safe, and logical approach should help attenuate Covid-19 induced systemic inflammation at an early stage without being affected by viral S1 spike protein mutations.

12.
BMC Gastroenterol ; 20(1): 64, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164535

RESUMO

BACKGROUND: Endoscopic retrograde cholangio-pancreatography (ERCP) is commonly performed in the management of pancreatic and biliary disease. Duodenoscopes are specialized endoscopes used to perform ERCP, and inherent to their design, a high rate of persistent bacterial contamination exists even after automated reprocessing and disinfection. Consequently, in recent years, ERCP has been associated with infection transmission, leading to several fatal patient outbreaks. Due to increasing fears over widespread future duodenoscope-related outbreaks, regulatory bodies have called for alterations in the design of duodenoscopes. A duodenoscope has recently been developed that employs a disposable cap. This novel design theoretically eliminates the mechanism behind persistent bacterial contamination and infection transmission. However, there are no data demonstrating persistent bacterial contamination rates, technical success rates, or clinical outcomes associated with these duodenoscopes. METHODS: A parallel arm randomized controlled trial will be performed for which 520 patients will be recruited. The study population will consist of consecutive patients undergoing ERCP procedures for any indication at a high-volume tertiary care centre in Calgary, Alberta, Canada. Patients will be randomized to an intervention group, that will undergo ERCP with a novel duodenoscope with disposable cap, or to a control group who will undergo ERCP with a traditional duodenoscope. Co-primary outcomes will include persistent bacterial contamination rates (post automated reprocessing) and ERCP technical success rates. Secondary outcomes include clinical success rates, overall and specific early and late adverse event rates, 30-day mortality and healthcare utilization rates, procedure and reprocessing times, and ease of device use. DISCUSSION: The ICECAP trial will answer important questions regarding the use of a novel duodenoscope with disposable cap. Specifically, persistent bacterial contamination, technical performance, and relevant clinical outcomes will be assessed. Given the mortality and morbidity burden associated with ERCP-related infectious outbreaks, the results of this study have the capacity to be impactful at an international level. TRIAL REGISTRATION: This trial was registered on clinicaltrials.gov (NCT04040504) on July 31, 2019.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica/instrumentação , Infecção Hospitalar/prevenção & controle , Duodenoscópios/microbiologia , Contaminação de Equipamentos/prevenção & controle , Controle de Infecções/métodos , Equipamentos Descartáveis , Desenho de Equipamento , Humanos
13.
Int J Parasitol ; 50(4): 263-275, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32184085

RESUMO

Polymicrobial infections of the gastro-intestinal tract are common in areas with poor sanitation. Disease outcome is the result of complex interactions between the host and pathogens. Such interactions lie at the core of future management strategies of enteric diseases. In developed countries of the world, Giardia duodenalis is a common cause of diarrheal disease. In contrast, giardiasis appears to protect children against diarrhea in countries with poor sanitation, via obscure mechanisms. We hypothesized that Giardia may protect its host from disease induced by a co-infecting pathogen such as attaching and effacing Escherichia coli. This enteropathogen is commonly implicated in pediatric diarrhea in developing countries. The findings indicate that co-infection with Giardia attenuates the severity of disease induced by Citrobacter rodentium, an equivalent of A/E E. coli in mice. Co-infection with Giardia reduced colitis, blood in stools, fecal softening, bacterial invasion, and weight loss; the protective effects were lost when co-infection occurred in Nod-like receptor pyrin-containing 3 knockout mice. In co-infected mice, elevated levels of antimicrobial peptides Murine ß defensin 3 and Trefoil Factor 3, and enhanced bacterial killing, were NLRP3-dependent. Inhibition of the NLRP3 inflammasome in human enterocytes blocked the activation of AMPs and bacterial killing. The findings uncover novel NLRP3-dependent modulatory mechanisms during co-infections with Giardia spp. and A/E enteropathogens, and demonstrate how these interactions may regulate the severity of enteric disease.


Assuntos
Giardia/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Citrobacter rodentium/patogenicidade , Coinfecção , Colite/microbiologia , Diarreia/microbiologia , Enterócitos/metabolismo , Escherichia coli/patogenicidade , Interações Hospedeiro-Parasita , Imunidade Inata , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Interações Microbianas
14.
Adv Parasitol ; 107: 173-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32122529

RESUMO

Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.


Assuntos
Giardíase/complicações , Giardíase/parasitologia , Enteropatias/etiologia , Giardia lamblia/fisiologia , Giardíase/patologia , Humanos , Enteropatias/parasitologia
15.
Antioxid Redox Signal ; 33(14): 1003-1009, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32064887

RESUMO

Aims: The covalent linking of nonsteroidal anti-inflammatory drugs to a hydrogen sulfide (H2S)-releasing moiety has been shown to dramatically reduce gastrointestinal (GI) damage and bleeding, as well as increase anti-inflammatory and analgesic potency. We have tested the hypothesis that an H2S-releasing derivative of ketoprofen (ATB-352) would exhibit enhanced efficacy without significant GI damage in a mouse model of allodynia/hyperalgesia. Results: ATB-352 was significantly more potent and effective as an analgesic than ketoprofen and did not elicit GI damage. Pretreatment with an antagonist of the CB1 cannabinoid receptor (AM251) significantly reduced the analgesic effects of ATB-352. The CB1 antagonist exacerbated GI damage when coadministered with ketoprofen, but GI damage was not induced by the combination of ATB-352 and the CB1 antagonist. In vitro, ATB-352 was substantially more potent than ketoprofen as an inhibitor of fatty acid amide hydrolase, consistent with a contribution of endogenous cannabinoids to the analgesic effects of this drug. Blood anandamide levels were significantly depressed by ketoprofen, but remained unchanged after treatment with ATB-352. Innovation: Ketoprofen is a potent analgesic, but its clinical use, even in the short term, is significantly limited by its propensity to cause significant ulceration and bleeding in the GI tract. Covalently linking an H2S-releasing moiety to ketoprofen profoundly reduces the GI toxicity of the drug, while boosting analgesic effectiveness. Conclusion: This study demonstrates a marked enhancement of the potency and effectiveness of ATB-352, an H2S-releasing derivative of ketoprofen, in part, through the involvement of the endogenous cannabinoid system. This may have significant advantages for the control and management of pain, such as in a postoperative setting.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Canabinoides/metabolismo , Canabinoides/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Sinergismo Farmacológico , Ácidos Graxos/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Sulfeto de Hidrogênio/efeitos adversos , Sulfeto de Hidrogênio/química , Cetoprofeno/farmacologia , Camundongos , Dor/tratamento farmacológico , Dor/etiologia
16.
Front Microbiol ; 11: 618106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510729

RESUMO

Alteration of the intestinal microbiome by enteropathogens is commonly associated with gastrointestinal diseases and disorders and has far-reaching consequences for overall health. Significant advances have been made in understanding the role of microbial dysbiosis during intestinal infections, including infection with the protozoan parasite Giardia duodenalis, one of the most prevalent gut protozoa. Altered species composition and diversity, functional changes in the commensal microbiota, and changes to intestinal bacterial biofilm structure have all been demonstrated during the course of Giardia infection and have been implicated in Giardia pathogenesis. Conversely, the gut microbiota has been found to regulate parasite colonization and establishment and plays a critical role in immune modulation during mono and polymicrobial infections. These disruptions to the commensal microbiome may contribute to a number of acute, chronic, and post-infectious clinical manifestations of giardiasis and may account for variations in disease presentation within and between infected populations. This review discusses recent advances in characterizing Giardia-induced bacterial dysbiosis in the gut and the roles of dysbiosis in Giardia pathogenesis.

17.
Br J Pharmacol ; 177(4): 769-777, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30834513

RESUMO

BACKGROUND AND PURPOSE: ATB-346 is a hydrogen sulfide (H2 S)-releasing anti-inflammatory and analgesic drug. Animal studies demonstrated negligible gastrointestinal (GI) damage despite marked inhibition of COX activity and significant analgesic and anti-inflammatory effects. In humans, ATB-346 (250 mg once daily) was found to inhibit COX to the same extent as naproxen (550 mg twice daily). EXPERIMENTAL APPROACH: Two hundred forty-four healthy volunteers completed a 2-week, double-blind study, taking either ATB-346 (250 mg once daily) or naproxen (550 mg twice daily), with upper GI ulceration being examined endoscopically. KEY RESULTS: Forty-two per cent of the subjects taking naproxen developed at least one ulcer (≥3-mm diameter), while only 3% of the subjects taking ATB-346 developed at least one ulcer. The two drugs produced comparable and substantial (>94%) suppression of COX activity. Subjects in the naproxen group developed more ulcers per subject than ATB-346-treated subjects and a greater incidence of larger ulcers (≥5-mm diameter). The incidence of dyspepsia, abdominal pain, gastro-oesophageal reflux, and nausea was lower with ATB-346 than with naproxen. Subjects treated with ATB-346 had significantly higher plasma levels of H2 S than those treated with naproxen. CONCLUSIONS AND IMPLICATIONS: This Phase 2B study provides unequivocal evidence for a marked reduction of GI toxicity of the H2 S-releasing analgesic/anti-inflammatory drug, ATB-346, as compared to the conventional dose of naproxen that produced equivalent suppression of COX. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Assuntos
Sulfeto de Hidrogênio , Preparações Farmacêuticas , Animais , Anti-Inflamatórios , Anti-Inflamatórios não Esteroides/efeitos adversos , Inibidores de Ciclo-Oxigenase , Método Duplo-Cego , Humanos , Naproxeno/efeitos adversos
18.
Trends Parasitol ; 35(8): 636-648, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279655

RESUMO

Giardia duodenalis is one of the most prevalent human enteropathogens and a major cause of diarrheal disease worldwide. Cysteine proteases (CPs) have been identified as major virulence factors in protozoan parasites, playing important roles in disease pathogenesis and in parasitic life cycles. G. duodenalis exhibits high proteolytic activity, and CPs play significant roles in giardiasis. Giardia CPs are directly involved in intestinal epithelial junctional complex disruption, intestinal epithelial cell apoptosis, and degradation of host immune factors, including chemokines and immunoglobulins. Giardia CPs have also been implicated in mucus depletion and microbiota dysbiosis induced by the parasite. This review discusses the most recent advances in characterization of Giardia Assemblage A and B CPs, including cathepsin B (catB)-like proteases.


Assuntos
Cisteína Proteases/metabolismo , Giardia/enzimologia , Giardíase/parasitologia , Proteínas de Protozoários/metabolismo , Giardíase/enzimologia , Humanos , Pesquisa/tendências , Fatores de Virulência/metabolismo
19.
J Biomed Sci ; 26(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602371

RESUMO

Gut microbiota interacting with an intact mucosal surface are key to the maintenance of homeostasis and health. This review discusses the current state of knowledge of the biofilm mode of growth of these microbiota communities, and how in turn their disruptions may cause disease. Beyond alterations of relative microbial abundance and diversity, the aim of the review is to focus on the disruptions of the microbiota biofilm structure and function, the dispersion of commensal bacteria, and the mechanisms whereby these dispersed commensals may become pathobionts. Recent findings have linked iron acquisition to the expression of virulence factors in gut commensals that have become pathobionts. Causal studies are emerging, and mechanisms common to enteropathogen-induced disruptions, as well as those reported for Inflammatory Bowel Disease and colo-rectal cancer are used as examples to illustrate the great translational potential of such research. These new observations shed new light on our attempts to develop new therapies that are able to protect and restore gut microbiota homeostasis in the many disease conditions that have been linked to microbiota dysbiosis.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Disbiose/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais/imunologia , Ferro/metabolismo , Disbiose/imunologia , Disbiose/microbiologia , Homeostase , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Simbiose
20.
Inflamm Bowel Dis ; 24(7): 1493-1502, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29788224

RESUMO

Significant alterations of intestinal microbiota and anemia are hallmarks of inflammatory bowel disease (IBD). It is widely accepted that iron is a key nutrient for pathogenic bacteria, but little is known about its impact on microbiota associated with IBD. We used a model device to grow human mucosa-associated microbiota in its physiological anaerobic biofilm phenotype. Compared to microbiota from healthy donors, microbiota from IBD patients generate biofilms ex vivo that were larger in size and cell numbers, contained higher intracellular iron concentrations, and exhibited heightened virulence in a model of human intestinal epithelia in vitro and in the nematode Caenorhabditis elegans. We also describe an unexpected iron-scavenging property for an experimental hydrogen sulfide-releasing derivative of mesalamine. The findings demonstrate that this new drug reduces the virulence of IBD microbiota biofilms through a direct reduction of microbial iron intake and without affecting bacteria survival or species composition within the microbiota. Metabolomic analyses indicate that this drug reduces the intake of purine nucleosides (guanosine), increases the secretion of metabolite markers of purine catabolism (urate and hypoxanthine), and reduces the secretion of uracil (a pyrimidine nucleobase) in complex multispecies human biofilms. These findings demonstrate a new pathogenic mechanism for dysbiotic microbiota in IBD and characterize a novel mode of action for a class of mesalamine derivatives. Together, these observations pave the way towards a new therapeutic strategy for treatment of patients with IBD.


Assuntos
Biofilmes , Disbiose/fisiopatologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Ferro/metabolismo , Adulto , Animais , Fenômenos Fisiológicos Bacterianos , Estudos de Casos e Controles , Modelos Animais de Doenças , Disbiose/microbiologia , Feminino , Homeostase , Humanos , Sulfeto de Hidrogênio , Doenças Inflamatórias Intestinais/complicações , Masculino , Mesalamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA