Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Ecol Evol ; 14(9): e70301, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279787

RESUMO

Carnivore guilds are charismatic and have vital and irreplaceable roles in their native ecosystems, yet many of these species are threatened and remain understudied. Borneo is a biodiversity hotspot that hosts a rich diversity of endemic wildlife but is threatened by deforestation and habitat loss. Using cameras placed by the Smithsonian Institution in Sabah, Borneo, we assessed the detection rates and diel activity patterns of the native felid species. Across 51 camera trap sites between 2016 and 2019, felids were detected 55 times across a combined 9958 trap nights, including 20 independent detection events for Sunda leopard cats, 15 for Sunda clouded leopards, 12 for Borneo bay cats, and 5 for marbled cats, with no detections of flat-headed cats. Collectively, this demonstrates the challenge of sampling cryptic species that have declined due to habitat loss and conflict with humans. Despite this, we show that Borneo bay cats and marbled cats exhibited different diel activity patterns than Sunda cloud leopards, suggesting the smaller species use temporal displacement to avoid competition and predation. Sunda leopard cats exhibited broadly similar activity patterns to Sunda clouded leopard, potentially because the two species typically occupy different dietary and habitat niches. These results demonstrate the importance of devoting future research towards monitoring these species and understanding the mechanisms by which they co-exist.

2.
Cell Rep ; 43(8): 114623, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146179

RESUMO

Selection of fruits with enhanced health benefits and superior flavor is an important aspect of peach breeding. Understanding the genetic interplay between appearance and flavor chemicals remains a major challenge. We identify the most important volatiles contributing to consumer preferences for peach, thus establishing priorities for improving flavor quality. We quantify volatiles of a peach population consisting of 184 accessions and demonstrate major reductions in the important flavor volatiles linalool and Z-3-hexenyl acetate in red-fleshed accessions. We identify 474 functional gene regulatory networks (GRNs), among which GRN05 plays a crucial role in controlling both red flesh and volatile content through the NAM/ATAF1/2/CUC (NAC) transcription factor PpBL. Overexpressing PpBL results in reduced expression of PpNAC1, a positive regulator for Z-3-hexenyl acetate and linalool synthesis. Additionally, we identify haplotypes for three tandem PpAATs that are significantly correlated with reduced gene expression and ester content. We develop genetic resources for improvement of fruit quality.


Assuntos
Frutas , Prunus persica , Frutas/genética , Frutas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Redes Reguladoras de Genes , Odorantes/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multiômica
3.
Plant Cell Environ ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101482

RESUMO

Peach varieties that differ in red coloration due to varied anthocyanin accumulation result from transcriptional regulation by PpMYB10s, a group of specific R2R3 MYBs. Here we investigated the mechanisms driving a lack of anthocyanin in yellow-skinned 'Jinxiu' peach peel, as well as accumulation induced by UV irradiance. It was found that PpMYB10.1, PpMYB10.2 and PpMYB10.3 were positive regulators of anthocyanin accumulation, but the stimulation by PpMYB10.2 was weak. Low expression of PpMYB10.1 causes natural anthocyanin deficiency in 'Jinxiu' peel. However, the promoter sequences of PpMYB10.1 were identical in 'Jinxiu' and a naturally red-coloured peach 'Hujingmilu'. Therefore, potential negative regulator(s) upstream of PpMYB10.1 were explored. A novel R2R3-MYB repressor termed PpMYB80 was identified through comparative transcriptomic analysis and then functionally confirmed via transiently overexpressing and silencing in peach fruit, as well as transformation in tobacco. PpMYB80 directly binds to the promoter of PpMYB10.1 and inhibits its expression, but does not affect PpMYB10.3. In UV-exposed 'Jinxiu' fruit, expression of PpMYB10.3 was upregulated, while PpMYB10.1 remained low and PpMYB80 enhanced, which results in accumulation of anthocyanin in peel. This study revealed a transcriptional cascade involving PpMYB activators and repressors in regulating basal and UV-induced anthocyanin accumulation in peach peel.

4.
Commun Biol ; 7(1): 980, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134612

RESUMO

Animal vigilance is often investigated under a narrow set of scenarios, but this approach may overestimate its contribution to animal lives. A solution may be to sample all looking behaviours and investigate numerous competing hypotheses in a single analysis. In this study, using a wild group of habituated chacma baboons (Papio ursinus griseipes) as a model system, we implemented a framework for predicting the key drivers of looking by comparing the strength of a full array of biological hypotheses. This included methods for defining individual-specific social threat environments, quantifying individual tolerance to human observers, and incorporating predator resource selection functions. Although we found evidence supporting reactionary and within-group (social) vigilance hypotheses, risk factors did not predict looking with the greatest precision, suggesting vigilance was not a major component of the animals' behavioural patterns generally. Instead, whilst some behaviours constrain opportunities for looking, many shared compatibility with looking, alleviating the pressure to be pre-emptively vigilant for threats. Exploring looking patterns in a thorough multi-hypothesis framework should be feasible across a range of taxa, offering new insights into animal behaviour that could alter our concepts of fear ecology.


Assuntos
Comportamento Animal , Medo , Papio ursinus , Animais , Masculino , Papio ursinus/fisiologia , Papio ursinus/psicologia , Feminino , Comportamento Social
5.
Front Plant Sci ; 15: 1408202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966143

RESUMO

Pepino (Solanum muricatum) is an herbaceous crop phylogenetically related to tomato and potato. Pepino fruit vary in color, size and shape, and are eaten fresh. In this study, we use pepino as a fruit model to understand the transcriptional regulatory mechanisms controlling fruit quality. To identify the key genes involved in anthocyanin biosynthesis in pepino, two genotypes were studied that contrasted in foliar and fruit pigmentation. Anthocyanin profiles were analyzed, as well as the expression of genes that encode enzymes for anthocyanin biosynthesis and transcriptional regulators using both RNA-seq and quantitative PCR. The differential expression of the transcription factor genes R2R3 MYB SmuMYB113 and R3MYB SmuATV suggested their association with purple skin and foliage phenotype. Functional analysis of these genes in both tobacco and pepino showed that SmuMYB113 activates anthocyanins, while SmuATV suppresses anthocyanin accumulation. However, despite elevated expression in all tissues, SmuMYB113 does not significantly elevate flesh pigmentation, suggesting a strong repressive background in fruit flesh tissue. These results will aid understanding of the differential regulation controlling fruit quality aspects between skin and flesh in other fruiting species.

6.
Trends Ecol Evol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068138

RESUMO

Individual behavioral plasticity enables animals to adjust to different scenarios. Yet, personality traits limit this flexibility, leading to consistent interindividual differences in behavior. These individual behavioral traits have the potential to govern community interactions, although testing this is difficult in complex natural systems. For large predators who often exert strong effects on ecosystem functioning, this behavioral diversity may be especially important and lead to individualized ecosystem roles. We present a framework for quantifying individual behavioral plasticity and personality traits of large wild predators, revealing the extent to which certain natural behaviors are governed by these latent traits. The outcomes will reveal how the innate characteristics of wildlife can scale up to affect community interactions.

7.
Plant J ; 119(3): 1433-1448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922743

RESUMO

Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Retroelementos , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Retroelementos/genética , Etilenos/metabolismo , Etilenos/biossíntese , Temperatura Baixa , Citrus/genética , Citrus/metabolismo
8.
Mol Hortic ; 4(1): 26, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945997

RESUMO

The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.

9.
Ecol Evol ; 14(6): e11586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882529

RESUMO

Designing mitigation strategies for invasive species requires a clear understanding of their ecology and behaviour. Chilla (or grey fox; Lycalopex griseus) were introduced to Isla Grande de Tierra del Fuego (Tierra del Fuego Island) in 1951 to control European rabbit (Oryctolagus cuniculus) populations. Although this management strategy was unsuccessful, the chilla spread across the island and are now considered invasive. Despite this, there is a lack of research concerning their ecology and behavioural patterns, particularly on the Argentinian side of the island. We assessed the detection rates and temporal activity patterns of chillas using camera traps in the Argentinian region of Tierra del Fuego Island. Chilla had average detection rates of 61.7 (SD ± 33.3, range = 13.5-105.7) per 100 trap nights. Although analysis by clock time suggested cathemeral activity patterns, when analysed by sun time the chillas exhibited distinct nocturnal activity patterns. These findings offer the first information on the detection rates of chilla on the Argentinian side of Tierra del Fuego Island and reveal new insights into their temporal activity patterns, providing an important basis for future research that may aid the development of more effective management and conservation strategies.

10.
J Integr Plant Biol ; 66(8): 1718-1734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896078

RESUMO

Phytohormones, epigenetic regulation and environmental factors regulate fruit ripening but their interplay during strawberry fruit ripening remains to be determined. In this study, bagged strawberry fruit exhibited delayed ripening compared with fruit grown in normal light, correlating with reduced abscisic acid (ABA) accumulation. Transcription of the key ABA catabolism gene, ABA 8'-hydroxylase FaCYP707A4, was induced in bagged fruit. With light exclusion whole genome DNA methylation levels were up-regulated, corresponding to a delayed ripening process, while DNA methylation levels in the promoter of FaCYP707A4 were suppressed, correlating with increases in transcript and decreased ABA content. Experiments indicated FaCRY1, a blue light receptor repressed in bagged fruit and FaAGO4, a key protein involved in RNA-directed DNA methylation, could bind to the promoter of FaCYP707A4. The interaction between FaCRY1 and FaAGO4, and an increased enrichment of FaAGO4 directed to the FaCYP707A4 promoter in fruit grown under light suggests FaCRY1 may influence FaAGO4 to modulate the DNA methylation status of the FaCYP707A4 promoter. Furthermore, transient overexpression of FaCRY1, or an increase in FaCRY1 transcription by blue light treatment, increases the methylation level of the FaCYP707A4 promoter, while transient RNA interference of FaCRY1 displayed opposite phenotypes. These findings reveal a mechanism by which DNA methylation influences ABA catabolism, and participates in light-mediated strawberry ripening.


Assuntos
Ácido Abscísico , Metilação de DNA , Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Fragaria/genética , Fragaria/metabolismo , Fragaria/crescimento & desenvolvimento , Metilação de DNA/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética
11.
Sci Rep ; 14(1): 7247, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538638

RESUMO

A wide-field microscope with epi-fluorescence and selective plane illumination was combined with a single-photon avalanche diode (SPAD) array camera to enable live-cell fluorescence lifetime imaging (FLIM) using time-correlated single-photon counting (TCSPC). The camera sensor comprised of 192 × 128 pixels, each integrating a single SPAD and a time-to-digital converter. Jointly, they produced a stream of single-photon images of photon arrival times with ≈ 38 ps accuracy. The photon arrival times were subject to systematic delays and nonlinearities, which were corrected by a Monte-Carlo algorithm. The SPAD camera was then applied to FLIM where histogramming the resulting photon arrival times in each pixel resulted in decays compatible with common data processing pipelines for fluorescence lifetime analysis. The capabilities of the TCSPC camera-based FLIM microscope were demonstrated by imaging living unicellular photosynthetic algae and artificial lipid vesicles. Epi-fluorescence illumination enabled rapid fluorescence lifetime imaging of living cells and selective-plane illumination enabled 3-dimensional FLIM of stationary samples.


Assuntos
Algoritmos , Microscopia de Fluorescência/métodos
13.
Plant Physiol ; 195(1): 598-616, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38319742

RESUMO

Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Pigmentação , Proteínas de Plantas , Fatores de Transcrição , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética , Antocianinas/metabolismo , Filogenia , Alelos , Genes de Plantas , Dados de Sequência Molecular , Sequência de Aminoácidos , Cor
14.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169146

RESUMO

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Assuntos
Proteínas de Plantas , Pyrus , Alelos , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nicotiana/metabolismo , Fenótipo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712824

RESUMO

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Assuntos
Actinidia , Humanos , Actinidia/genética , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Plant Cell ; 36(5): 1637-1654, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38114096

RESUMO

MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.


Assuntos
Actinidia , Arabidopsis , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Actinidia/genética , Actinidia/metabolismo , Arabidopsis/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sequência de Bases
17.
Front Plant Sci ; 14: 1213086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711308

RESUMO

Carotenoids are colorful lipophilic isoprenoids synthesized in all photosynthetic organisms which play roles in plant growth and development and provide numerous health benefits in the human diet (precursor of Vitamin A). The commercially popular kiwifruits are golden yellow-fleshed (Actinidia chinensis) and green fleshed (A. deliciosa) cultivars which have a high carotenoid concentration. Understanding the molecular mechanisms controlling the synthesis and sequestration of carotenoids in Actinidia species is key to increasing nutritional value of this crop via breeding. In this study we analyzed fruit with varying flesh color from three Actinidia species; orange-fleshed A. valvata (OF), yellow-fleshed A. polygama (YF) and green-fleshed A. arguta (GF). Microscopic analysis revealed that carotenoids accumulated in a crystalline form in YF and OF chromoplasts, with the size of crystals being bigger in OF compared to YF, which also contained globular substructures in the chromoplast. Metabolic profiles were investigated using ultra-performance liquid chromatography (UPLC), which showed that ß-carotene was the predominant carotenoid in the OF and YF species, while lutein was the dominant carotenoid in the GF species. Global changes in gene expression were studied between OF and GF (both tetraploid) species using RNA-sequencing which showed higher expression levels of upstream carotenoid biosynthesis-related genes such as DXS, PSY, GGPPS, PDS, ZISO, and ZDS in OF species compared to GF. However, low expression of downstream pathway genes was observed in both species. Pathway regulatory genes (OR and OR-L), plastid morphology related genes (FIBRILLIN), chlorophyll degradation genes (SGR, SGR-L, RCCR, and NYC1) were upregulated in OF species compared to GF. This suggests chlorophyll degradation (primarily in the initial ripening stages) is accompanied by increased carotenoid production and localization in orange flesh tissue, a contrast from green flesh tissue. These results suggest a coordinated change in the carotenoid pathway, as well as changes in plastid type, are responsible for an orange phenotype in certain kiwifruit species.

18.
iScience ; 26(7): 107142, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416454

RESUMO

hiPSC-CMs are being considered by the Food and Drug Administration and other regulatory agencies for in vitro cardiotoxicity screening to provide human-relevant safety data. Widespread adoption of hiPSC-CMs in regulatory and academic science is limited by the immature, fetal-like phenotype of the cells. Here, to advance the maturation state of hiPSC-CMs, we developed and validated a human perinatal stem cell-derived extracellular matrix coating applied to high-throughput cell culture plates. We also present and validate a cardiac optical mapping device designed for high-throughput functional assessment of mature hiPSC-CM action potentials using voltage-sensitive dye and calcium transients using calcium-sensitive dyes or genetically encoded calcium indicators (GECI, GCaMP6). We utilize the optical mapping device to provide new biological insight into mature chamber-specific hiPSC-CMs, responsiveness to cardioactive drugs, the effect of GCaMP6 genetic variants on electrophysiological function, and the effect of daily ß-receptor stimulation on hiPSC-CM monolayer function and SERCA2a expression.

19.
Plant Biotechnol J ; 21(8): 1695-1706, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37161940

RESUMO

Citrate is a common primary metabolite which often characterizes fruit flavour. The key regulators of citrate accumulation in fruit and vegetables are poorly understood. We systematically analysed the dynamic profiles of organic acid components during the development of kiwifruit (Actinidia spp.). Citrate continuously accumulated so that it became the predominate contributor to total acidity at harvest. Based on a co-expression network analysis using different kiwifruit cultivars, an Al-ACTIVATED MALATE TRANSPORTER gene (AcALMT1) was identified as a candidate responsible for citrate accumulation. Electrophysiological assays using expression of this gene in Xenopus oocytes revealed that AcALMT1 functions as a citrate transporter. Additionally, transient overexpression of AcALMT1 in kiwifruit significantly increased citrate content, while tissues showing higher AcALMT1 expression accumulated more citrate. The expression of AcALMT1 was highly correlated with 17 transcription factor candidates. However, dual-luciferase and EMSA assays indicated that only the NAC transcription factor, AcNAC1, activated AcALMT1 expression via direct binding to its promoter. Targeted CRISPR-Cas9-induced mutagenesis of AcNAC1 in kiwifruit resulted in dramatic declines in citrate levels while malate and quinate levels were not substantially affected. Our findings show that transcriptional regulation of a major citrate transporter, by a NAC transcription factor, is responsible for citrate accumulation in kiwifruit, which has broad implications for other fruits and vegetables.


Assuntos
Ácido Cítrico , Fatores de Transcrição , Ácido Cítrico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Malatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
20.
Plant Physiol ; 192(3): 1684-1695, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073491

RESUMO

L-Ascorbic acid (AsA) is more commonly known as vitamin C and is an indispensable compound for human health. As a major antioxidant, AsA not only maintains redox balance and resists biological and abiotic stress but also regulates plant growth, induces flowering, and delays senescence through complex signal transduction networks. However, AsA content varies greatly in horticultural crops, especially in fruit crops. The AsA content of the highest species is approximately 1,800 times higher than that of the lowest species. There have been significant advancements in the understanding of AsA accumulation in the past 20 years. The most noteworthy accomplishment was the identification of the critical rate-limiting genes for the 2 major AsA synthesis pathways (L-galactose pathway and D-galacturonic acid pathway) in fruit crops. The rate-limiting genes of the former are GMP, GME, GGP, and GPP, and the rate-limiting gene of the latter is GalUR. Moreover, APX, MDHAR, and DHAR are also regarded as key genes in degradation and regeneration pathways. Interestingly, some of these key genes are sensitive to environmental factors, such as GGP being induced by light. The efficiency of enhancing AsA content is high by editing upstream open reading frames (uORF) of the key genes and constructing multi-gene expression vectors. In summary, the AsA metabolism has been well understood in fruit crops, but the transport mechanism of AsA and the synergistic improvement of AsA and other traits is less known, which will be the focus of AsA research in fruit crops.


Assuntos
Antioxidantes , Frutas , Humanos , Frutas/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Oxirredução , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA