Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Commun ; 15(1): 4478, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796449

RESUMO

Predicting the evolution of a large system of units using its structure of interaction is a fundamental problem in complex system theory. And so is the problem of reconstructing the structure of interaction from temporal observations. Here, we find an intricate relationship between predictability and reconstructability using an information-theoretical point of view. We use the mutual information between a random graph and a stochastic process evolving on this random graph to quantify their codependence. Then, we show how the uncertainty coefficients, which are intimately related to that mutual information, quantify our ability to reconstruct a graph from an observed time series, and our ability to predict the evolution of a process from the structure of its interactions. We provide analytical calculations of the uncertainty coefficients for many different systems, including continuous deterministic systems, and describe a numerical procedure when exact calculations are intractable. Interestingly, we find that predictability and reconstructability, even though closely connected by the mutual information, can behave differently, even in a dual manner. We prove how such duality universally emerges when changing the number of steps in the process. Finally, we provide evidence that predictability-reconstruction dualities may exist in dynamical processes on real networks close to criticality.

2.
Netw Neurosci ; 8(1): 44-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562286

RESUMO

Elucidating the coupling between the structure and the function of the brain and its development across maturation has attracted a lot of interest in the field of network neuroscience in the last 15 years. Mounting evidence supports the hypothesis that the onset of certain brain disorders is linked with the interplay between the structural architecture of the brain and its functional processes, often accompanied with unusual connectivity features. This paper introduces a method called the network-based statistic-simultaneous node investigation (NBS-SNI) that integrates both representations into a single framework, and identifies connectivity abnormalities in case-control studies. With this method, significance is given to the properties of the nodes, as well as to their connections. This approach builds on the well-established network-based statistic (NBS) proposed in 2010. We uncover and identify the regimes in which NBS-SNI offers a gain in statistical resolution to identify a contrast of interest using synthetic data. We also apply our method on two real case-control studies, one consisting of individuals diagnosed with autism and the other consisting of individuals diagnosed with early psychosis. Using NBS-SNI and node properties such as the closeness centrality and local information dimension, we found hypo- and hyperconnected subnetworks and show that our method can offer a 9 percentage points gain in prediction power over the standard NBS.

3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366192

RESUMO

CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.


Assuntos
Bacteriófagos , Prófagos , Criança , Humanos , Prófagos/genética , Escherichia coli/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bacteriófagos/genética , Genoma Bacteriano , Sistemas CRISPR-Cas
4.
ArXiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36798454

RESUMO

Forecasting disease spread is a critical tool to help public health officials design and plan public health interventions.However, the expected future state of an epidemic is not necessarily well defined as disease spread is inherently stochastic, contact patterns within a population are heterogeneous, and behaviors change. In this work, we use time-dependent probability generating functions (PGFs) to capture these characteristics by modeling a stochastic branching process of the spread of a disease over a network of contacts in which public health interventions are introduced over time. To achieve this, we define a general transmissibility equation to account for varying transmission rates (e.g. masking), recovery rates (e.g. treatment), contact patterns (e.g. social distancing) and percentage of the population immunized (e.g. vaccination). The resulting framework allows for a temporal and probabilistic analysis of an intervention's impact on disease spread, which match continuous-time stochastic simulations that are much more computationally expensive.To aid policy making, we then define several metrics over which temporal and probabilistic intervention forecasts can be compared: Looking at the expected number of cases and the worst-case scenario over time, as well as the probability of reaching a critical level of cases and of not seeing any improvement following an intervention.Given that epidemics do not always follow their average expected trajectories and that the underlying dynamics can change over time, our work paves the way for more detailed short-term forecasts of disease spread and more informed comparison of intervention strategies.

5.
Proc Natl Acad Sci U S A ; 121(1): e2312202121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154065

RESUMO

Current epidemics in the biological and social domains are challenging the standard assumptions of mathematical contagion models. Chief among them are the complex patterns of transmission caused by heterogeneous group sizes and infection risk varying by orders of magnitude in different settings, like indoor versus outdoor gatherings in the COVID-19 pandemic or different moderation practices in social media communities. However, quantifying these heterogeneous levels of risk is difficult, and most models typically ignore them. Here, we include these features in an epidemic model on weighted hypergraphs to capture group-specific transmission rates. We study analytically the consequences of ignoring the heterogeneous transmissibility and find an induced superlinear infection rate during the emergence of a new outbreak, even though the underlying mechanism is a simple, linear contagion. The dynamics produced at the individual and group levels are therefore more similar to complex, nonlinear contagions, thus blurring the line between simple and complex contagions in realistic settings. We support this claim by introducing a Bayesian inference framework to quantify the nonlinearity of contagion processes. We show that simple contagions on real weighted hypergraphs are systematically biased toward the superlinear regime if the heterogeneity of the weights is ignored, greatly increasing the risk of erroneous classification as complex contagions. Our results provide an important cautionary tale for the challenging task of inferring transmission mechanisms from incidence data. Yet, it also paves the way for effective models that capture complex features of epidemics through nonlinear infection rates.


Assuntos
Modelos Teóricos , Pandemias , Humanos , Teorema de Bayes , Viés
6.
Sci Rep ; 13(1): 21364, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049512

RESUMO

The network reconstruction task aims to estimate a complex system's structure from various data sources such as time series, snapshots, or interaction counts. Recent work has examined this problem in networks whose relationships involve precisely two entities-the pairwise case. Here, using Bayesian inference, we investigate the general problem of reconstructing a network in which higher-order interactions are also present. We study a minimal example of this problem, focusing on the case of hypergraphs with interactions between pairs and triplets of vertices, measured imperfectly and indirectly. We derive a Metropolis-Hastings-within-Gibbs algorithm for this model to highlight the unique challenges that come with estimating higher-order models. We show that this approach tends to reconstruct empirical and synthetic networks more accurately than an equivalent graph model without higher-order interactions.

7.
Nat Commun ; 14(1): 7585, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990019

RESUMO

One of the pillars of the geometric approach to networks has been the development of model-based mapping tools that embed real networks in its latent geometry. In particular, the tool Mercator embeds networks into the hyperbolic plane. However, some real networks are better described by the multidimensional formulation of the underlying geometric model. Here, we introduce D-Mercator, a model-based embedding method that produces multidimensional maps of real networks into the (D + 1)-hyperbolic space, where the similarity subspace is represented as a D-sphere. We used D-Mercator to produce multidimensional hyperbolic maps of real networks and estimated their intrinsic dimensionality in terms of navigability and community structure. Multidimensional representations of real networks are instrumental in the identification of factors that determine connectivity and in elucidating fundamental issues that hinge on dimensionality, such as the presence of universality in critical behavior.

8.
Bull Math Biol ; 85(12): 118, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857996

RESUMO

Forecasting disease spread is a critical tool to help public health officials design and plan public health interventions. However, the expected future state of an epidemic is not necessarily well defined as disease spread is inherently stochastic, contact patterns within a population are heterogeneous, and behaviors change. In this work, we use time-dependent probability generating functions (PGFs) to capture these characteristics by modeling a stochastic branching process of the spread of a disease over a network of contacts in which public health interventions are introduced over time. To achieve this, we define a general transmissibility equation to account for varying transmission rates (e.g. masking), recovery rates (e.g. treatment), contact patterns (e.g. social distancing) and percentage of the population immunized (e.g. vaccination). The resulting framework allows for a temporal and probabilistic analysis of an intervention's impact on disease spread, which match continuous-time stochastic simulations that are much more computationally expensive. To aid policy making, we then define several metrics over which temporal and probabilistic intervention forecasts can be compared: Looking at the expected number of cases and the worst-case scenario over time, as well as the probability of reaching a critical level of cases and of not seeing any improvement following an intervention. Given that epidemics do not always follow their average expected trajectories and that the underlying dynamics can change over time, our work paves the way for more detailed short-term forecasts of disease spread and more informed comparison of intervention strategies.


Assuntos
Epidemias , Modelos Biológicos , Conceitos Matemáticos , Epidemias/prevenção & controle , Saúde Pública , Previsões
9.
ACS Appl Mater Interfaces ; 15(37): 43403-43413, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37682772

RESUMO

The mechanical properties of living cells reflect their physiological and pathological state. In particular, cancer cells undergo cytoskeletal modifications that typically make them softer than healthy cells, a property that could be used as a diagnostic tool. However, this is challenging because cells are complex structures displaying a broad range of morphologies when cultured in standard 2D culture dishes. Here, we use adhesive micropatterns to impose the cell geometry and thus standardize the mechanics and morphologies of cancer cells, which we measure by atomic force microscopy (AFM), mechanical nanomapping, and membrane nanotube pulling. We show that micropatterning cancer cells leads to distinct morphological and mechanical changes for different cell lines. Micropatterns did not systematically lower the variability in cell elastic modulus distribution. These effects emerge from a variable cell spreading rate associated with differences in the organization of the cytoskeleton, thus providing detailed insights into the structure-mechanics relationship of cancer cells cultured on micropatterns. Combining AFM with micropatterns reveals new mechanical and morphological observables applicable to cancer cells and possibly other cell types.


Assuntos
Citoesqueleto , Neoplasias , Humanos , Microscopia de Força Atômica , Linhagem Celular , Módulo de Elasticidade
10.
PNAS Nexus ; 2(5): pgad136, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181048

RESUMO

Over the last decade, random hyperbolic graphs have proved successful in providing geometric explanations for many key properties of real-world networks, including strong clustering, high navigability, and heterogeneous degree distributions. These properties are ubiquitous in systems as varied as the internet, transportation, brain or epidemic networks, which are thus unified under the hyperbolic network interpretation on a surface of constant negative curvature. Although a few studies have shown that hyperbolic models can generate community structures, another salient feature observed in real networks, we argue that the current models are overlooking the choice of the latent space dimensionality that is required to adequately represent clustered networked data. We show that there is an important qualitative difference between the lowest-dimensional model and its higher-dimensional counterparts with respect to how similarity between nodes restricts connection probabilities. Since more dimensions also increase the number of nearest neighbors for angular clusters representing communities, considering only one more dimension allows us to generate more realistic and diverse community structures.

11.
PNAS Nexus ; 2(5): pgad150, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215634

RESUMO

Dimension reduction is a common strategy to study nonlinear dynamical systems composed by a large number of variables. The goal is to find a smaller version of the system whose time evolution is easier to predict while preserving some of the key dynamical features of the original system. Finding such a reduced representation for complex systems is, however, a difficult task. We address this problem for dynamics on weighted directed networks, with special emphasis on modular and heterogeneous networks. We propose a two-step dimension-reduction method that takes into account the properties of the adjacency matrix. First, units are partitioned into groups of similar connectivity profiles. Each group is associated to an observable that is a weighted average of the nodes' activities within the group. Second, we derive a set of equations that must be fulfilled for these observables to properly represent the original system's behavior, together with a method for approximately solving them. The result is a reduced adjacency matrix and an approximate system of ODEs for the observables' evolution. We show that the reduced system can be used to predict some characteristic features of the complete dynamics for different types of connectivity structures, both synthetic and derived from real data, including neuronal, ecological, and social networks. Our formalism opens a way to a systematic comparison of the effect of various structural properties on the overall network dynamics. It can thus help to identify the main structural driving forces guiding the evolution of dynamical processes on networks.

12.
BMC Glob Public Health ; 1(1): 28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38798822

RESUMO

Background: Controlling the spread of infectious diseases-even when safe, transmission-blocking vaccines are available-may require the effective use of non-pharmaceutical interventions (NPIs), e.g., mask wearing, testing, limits on group sizes, venue closure. During the SARS-CoV-2 pandemic, many countries implemented NPIs inconsistently in space and time. This inconsistency was especially pronounced for policies in the United States of America (US) related to venue closure. Methods: Here, we investigate the impact of inconsistent policies associated with venue closure using mathematical modeling and high-resolution human mobility, Google search, and county-level SARS-CoV-2 incidence data from the USA. Specifically, we look at high-resolution location data and perform a US-county-level analysis of nearly 8 million SARS-CoV-2 cases and 150 million location visits, including 120 million church visitors across 184,677 churches, 14 million grocery visitors across 7662 grocery stores, and 13.5 million gym visitors across 5483 gyms. Results: Analyzing the interaction between venue closure and changing mobility using a mathematical model shows that, across a broad range of model parameters, inconsistent or partial closure can be worse in terms of disease transmission as compared to scenarios with no closures at all. Importantly, changes in mobility patterns due to epidemic control measures can lead to increase in the future number of cases. In the most severe cases, individuals traveling to neighboring jurisdictions with different closure policies can result in an outbreak that would otherwise have been contained. To motivate our mathematical models, we turn to mobility data and find that while stay-at-home orders and closures decreased contacts in most areas of the USA, some specific activities and venues saw an increase in attendance and an increase in the distance visitors traveled to attend. We support this finding using search query data, which clearly shows a shift in information seeking behavior concurrent with the changing mobility patterns. Conclusions: While coarse-grained observations are not sufficient to validate our models, taken together, they highlight the potential unintended consequences of inconsistent epidemic control policies related to venue closure and stress the importance of balancing the societal needs of a population with the risk of an outbreak growing into a large epidemic. Supplementary Information: The online version contains supplementary material available at 10.1186/s44263-023-00028-z.

13.
ArXiv ; 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35169597

RESUMO

Most models of epidemic spread, including many designed specifically for COVID-19, implicitly assume mass-action contact patterns and undirected contact networks, meaning that the individuals most likely to spread the disease are also the most at risk to receive it from others. Here, we review results from the theory of random directed graphs which show that many important quantities, including the reproduction number and the epidemic size, depend sensitively on the joint distribution of in- and out-degrees ("risk" and "spread"), including their heterogeneity and the correlation between them. By considering joint distributions of various kinds, we elucidate why some types of heterogeneity cause a deviation from the standard Kermack-McKendrick analysis of SIR models, i.e., so-called mass-action models where contacts are homogeneous and random, and some do not. We also show that some structured SIR models informed by realistic complex contact patterns among types of individuals (age or activity) are simply mixtures of Poisson processes and tend not to deviate significantly from the simplest mass-action model. Finally, we point out some possible policy implications of this directed structure, both for contact tracing strategy and for interventions designed to prevent superspreading events. In particular, directed graphs have a forward and backward version of the classic "friendship paradox" -- forward edges tend to lead to individuals with high risk, while backward edges lead to individuals with high spread -- such that a combination of both forward and backward contact tracing is necessary to find superspreading events and prevent future cascades of infection.

14.
Phys Rev Lett ; 127(15): 158301, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678024

RESUMO

The collocation of individuals in different environments is an important prerequisite for exposure to infectious diseases on a social network. Standard epidemic models fail to capture the potential complexity of this scenario by (1) neglecting the higher-order structure of contacts that typically occur through environments like workplaces, restaurants, and households, and (2) assuming a linear relationship between the exposure to infected contacts and the risk of infection. Here, we leverage a hypergraph model to embrace the heterogeneity of environments and the heterogeneity of individual participation in these environments. We find that combining heterogeneous exposure with the concept of minimal infective dose induces a universal nonlinear relationship between infected contacts and infection risk. Under nonlinear infection kernels, conventional epidemic wisdom breaks down with the emergence of discontinuous transitions, superexponential spread, and hysteresis.

15.
Nat Commun ; 12(1): 4720, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354055

RESUMO

Forecasting the evolution of contagion dynamics is still an open problem to which mechanistic models only offer a partial answer. To remain mathematically or computationally tractable, these models must rely on simplifying assumptions, thereby limiting the quantitative accuracy of their predictions and the complexity of the dynamics they can model. Here, we propose a complementary approach based on deep learning where effective local mechanisms governing a dynamic on a network are learned from time series data. Our graph neural network architecture makes very few assumptions about the dynamics, and we demonstrate its accuracy using different contagion dynamics of increasing complexity. By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data. Finally, we illustrate the applicability of our approach using real data of the COVID-19 outbreak in Spain. Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis/métodos , Aprendizado Profundo , Surtos de Doenças/prevenção & controle , Previsões/métodos , Humanos , Modelos Teóricos , SARS-CoV-2 , Espanha/epidemiologia
16.
Phys Rev E ; 103(3-1): 032301, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862710

RESUMO

Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are not random pairwise encounters: they occur within various types of gatherings such as workplaces, households, schools, and concerts, best described by a higher-order network structure. We model contagions on higher-order networks using group-based approximate master equations, in which we track all states and interactions within a group of nodes and assume a mean-field coupling between them. Using the susceptible-infected-susceptible dynamics, our approach reveals the existence of a mesoscopic localization regime, where a disease can concentrate and self-sustain only around large groups in the network overall organization. In this regime, the phase transition is smeared, characterized by an inhomogeneous activation of the groups. At the mesoscopic level, we observe that the distribution of infected nodes within groups of the same size can be very dispersed, even bimodal. When considering heterogeneous networks, both at the level of nodes and at the level of groups, we characterize analytically the region associated with mesoscopic localization in the structural parameter space. We put in perspective this phenomenon with eigenvector localization and discuss how a focus on higher-order structures is needed to discern the more subtle localization at the mesoscopic level. Finally, we discuss how mesoscopic localization affects the response to structural interventions and how this framework could provide important insights for a broad range of dynamics.

17.
Biol Cell ; 113(8): 329-343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33826772

RESUMO

Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.


Assuntos
Citoesqueleto de Actina , Membrana Celular , Células Eucarióticas , Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Cavéolas/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Vesículas Revestidas por Clatrina/fisiologia , Endocitose/fisiologia , Células Eucarióticas/fisiologia , Células Eucarióticas/ultraestrutura , Transporte Proteico
19.
Phys Rev Lett ; 126(9): 098301, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750152

RESUMO

Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gatherings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.


Assuntos
Epidemias/prevenção & controle , Modelos Teóricos , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Comportamento Social
20.
ArXiv ; 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33173802

RESUMO

Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gatherings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA