Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 21(3): 345-366, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400892

RESUMO

The European Space Agency (ESA) and Roscosmos ExoMars mission will launch the "Rosalind Franklin" rover in 2022 for a landing on Mars in 2023.The goals of the mission are to search for signs of past and present life on Mars, investigate the water/geochemical environment as a function of depth in the shallow subsurface, and characterize the surface environment. To meet these scientific objectives while minimizing the risk for landing, a 5-year-long landing site selection process was conducted by ESA, during which eight candidate sites were down selected to one: Oxia Planum. Oxia Planum is a 200 km-wide low-relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest margin of Arabia Terra. This region exhibits Noachian-aged terrains. We show in this study that the selected landing site has recorded at least two distinct aqueous environments, both of which occurred during the Noachian: (1) a first phase that led to the deposition and alteration of ∼100 m of layered clay-rich deposits and (2) a second phase of a fluviodeltaic system that postdates the widespread clay-rich layered unit. Rounded isolated buttes that overlie the clay-bearing unit may also be related to aqueous processes. Our study also details the formation of an unaltered mafic-rich dark resistant unit likely of Amazonian age that caps the other units and possibly originated from volcanism. Oxia Planum shows evidence for intense erosion from morphology (inverted features) and crater statistics. Due to these erosional processes, two types of Noachian sedimentary rocks are currently exposed. We also expect rocks at the surface to have been exposed to cosmic bombardment only recently, minimizing organic matter damage.


Assuntos
Exobiologia , Marte , Meio Ambiente Extraterreno , Geologia , Água
2.
Sci Total Environ ; 592: 616-626, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28318696

RESUMO

In the context of global warming, it is important to understand the drivers controlling river temperature in order to mitigate temperature increases. A modeling approach can be useful for quantifying the respective importance of the different drivers, notably groundwater inputs and riparian shading which are potentially critical for reducing summer temperature. In this study, we use a one-dimensional deterministic model to predict summer water temperature at an hourly time step over a 21km reach of the lower Ain River (France). This sinuous gravel-bed river undergoes summer temperature increase with potential impacts on salmonid populations. The model considers heat fluxes at the water-air interface, attenuation of solar radiation by riparian forest, groundwater inputs and hydraulic characteristics of the river. Modeling is performed over two periods of five days during the summers 2010 and 2011. River properties are obtained from hydraulic modeling based on cross-section profiles and water level surveys. We model shadows of the vegetation on the river surface using LiDAR data. Groundwater inputs are determined using airborne thermal infrared (TIR) images and hydrological data. Results indicate that vegetation and groundwater inputs can mitigate high water temperatures during summer. Riparian shading effect is fairly similar between the two periods (-0.26±0.12°C and -0.31±0.18°C). Groundwater input cooling is variable between the two studied periods: when groundwater discharge represents 16% of the river discharge, it cools the river down by 0.68±0.13°C while the effect is very low (0.11±0.01°C) when the groundwater discharge contributes only 2% to the discharge. The effect of shading varies through the day: low in the morning and high during the afternoon and the evening whereas those induced by groundwater inputs is more constant through the day. Overall, the effect of riparian vegetation and groundwater inputs represents about 10% in 2010 and 24% in 2011 of water temperature diurnal amplitudes.

3.
Sensors (Basel) ; 9(1): 616-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22389620

RESUMO

Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.

4.
Science ; 305(5680): 78-81, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15232103

RESUMO

Dendritic valleys on the plateau and canyons of the Valles Marineris region were identified from Thermal Emission Imaging System (THEMIS) images taken by Mars Odyssey. The geomorphic characteristics of these valleys, especially their high degree of branching, favor formation by atmospheric precipitation. The presence of inner channels and the maturity of the branched networks indicate sustained fluid flows over geologically long periods of time. These fluvial landforms occur within the Late Hesperian units (about 2.9 to 3.4 billion years old), when Mars was thought to have been cold. Our results suggest a period of warmer conditions conducive to hydrological activity.


Assuntos
Marte , Chuva , Água , Clima , Meio Ambiente Extraterreno , Temperatura , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA