Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 15(30): 7382-93, 2009 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-19551782

RESUMO

A conformationally restricted molecular dyad has been synthesized and subjected to detailed photophysical examination. The dyad comprises a borondipyrromethene (Bodipy) dye covalently linked to a buckminsterfullerene C60 residue, and is equipped with hexadecyne units at the boron centre in order to assist solubility. The linkage consists of a diphenyltolane, attached at the meso position of the Bodipy core and through an N-methylpyrrolidine ring at the C60 surface. Triplet states localised on the two terminals are essentially isoenergetic. Cyclic voltammetry indicates that light-induced electron transfer from Bodipy to C60 is thermodynamically favourable and could compete with intramolecular energy transfer in the same direction. The driving force for light-induced electron abstraction from Bodipy by the singlet excited state of C60 depends critically on the solvent polarity. Thus, in non-polar solvents, light-induced electron transfer is thermodynamically uphill, but fast excitation energy transfer occurs from Bodipy to C60 and is followed by intersystem crossing and subsequent equilibration of the two triplet excited states. Moving to a polar solvent switches on light-induced electron transfer. Now, in benzonitrile, the charge-transfer state (CTS) is positioned slightly below the triplet levels, such that charge recombination restores the ground state. However, in CH2Cl2 or methyltetrahydrofuran, the CTS is slightly higher in energy than the triplet levels, and decays, in part, to form the triplet state localized on the C60 residue. This step is highly specific and does not result in direct formation of the triplet excited state localized on the Bodipy unit. Subsequent equilibration of the two triplets takes place on a relatively slow timescale.

2.
J Phys Chem A ; 111(14): 2641-9, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17388362

RESUMO

A small series of p-quaterphenyl derivatives has been prepared in which the dihedral angle (phi) for the two central rings is constrained by dialkoxy spacers of varying length. The photophysical properties of these compounds remain comparable, but there is a clear correlation between the rate constants for nonradiative decay of both singlet and triplet excited states and phi in fluid solution. The rates tend toward a minimum as phi approaches 90 degrees . These effects are attributed to the general phenomenon of extended delocalization and can be traced to a combination of changes in the Huang-Rhys factor and the electron-vibrational coupling matrix element, both relating to displacement of the relevant potential energy surfaces and to the medium-frequency vibronic mode coupled to decay. The latter effect arises because of different levels of conjugation in the ground-state molecule. Such findings might have important implications for the design of improved light-emitting diodes. A similar angle dependence is noted for the yield of the pi-radical cation formed on photoionization in a polar solvent, but here, the effect is due to variations in the respective energy gaps between the relevant excited states.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/síntese química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Padrões de Referência
3.
J Phys Chem A ; 110(49): 13145-50, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17149827

RESUMO

Femtosecond transient absorption spectroscopy was employed to determine quantitatively the ultrafast S1-T1 intersystem crossing in a 2-substituted 9,10-anthraquinone derivative (3), kisc = 2.5 x 10(12) s-1. Notwithstanding this rapid process, photoexcitation of dyad 1 is followed by competition between intersystem crossing and intramolecular charge separation, the latter leading to a short-lived (2 ps) singlet charge-transfer (CT) state. The local triplet state itself undergoes slower charge separation to populate a relatively long-lived (130 ns) triplet CT state. An earlier report about the formation of an extremely long-lived CT state (> 900 micros) in 1 was found to be erroneous and was related to the sacrificial photo-oxidation of the dimethylsulfoxide solvent used in that study. Finally, some important criteria have been formulated for future experimental validation of "unusually long-lived" CT states.

4.
Phys Chem Chem Phys ; 8(35): 4112-8, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17028700

RESUMO

A ditopic ruthenium(II) tris(2,2'-bipyridyl)-based fullerene conjugate has been synthesized so as to separate the photoactive terminals by way of a short ethynylene spacer group that is expected to act as a rigid rod. Intramolecular triplet-energy transfer from the metal complex to the fullerene is quantitative at all temperatures and there is no indication for competing electron transfer. Temperature dependence studies indicate two pathways for triplet-energy transfer. An activationless route dominates at low temperature and is attributed to through-bond electron exchange that takes place via super-exchange interactions. The triplet energy of the bridging unit lies well above that of the metal complex. An activated process is switched-on at high temperatures and is believed to involve through-space electron exchange within closed conformations. Molecular dynamics simulations predict that, in addition to an extended conformation, the linker can distort in such a way that the terminals come into orbital contact. In fact, the resultant closed conformation possesses an idealised geometry for fast electron exchange.

5.
J Am Chem Soc ; 128(31): 10231-9, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881653

RESUMO

Several borondipyrromethene (Bodipy) dyes bearing an aryl nucleus linked directly to the boron center have been prepared under mild conditions. The choice of Grignard or lithio organo-metallic reagents allows the isolation of B(F)(aryl) or B(aryl)2 derivatives; where aryl refers to phenyl, anisyl, naphthyl, or pyrenyl fragments. A single crystal, X-ray structure determination for the bis-anisyl compound shows that the sp3 hybridized boron center remains pseudo-tetrahedral and that the B-C bond distances are 1.615 and 1.636 A. All compounds are electrode active but replacement of the fluorine atoms by aryl fragments renders the Bodipy unit more easily oxidized by 100 mV in the B(F)(aryl) and 180 mV in the B(aryl)2 compounds whereas reduction is made more difficult by a comparable amount. Strong fluorescence is observed from the Bodipy fluorophore present in each of the new dyes, with the radiative rate constant being independent of the nature of the aryl substituent. The fluorescence quantum yields are solvent dependent and, at least in some cases (aryl = anisyl or pyrenyl), nonradiative decay from the first-excited singlet state is strongly activated. There is no indication, however, for population of a charge-transfer state, in which the aryl substituent acts as donor and the Bodipy fragment functions as acceptor, that is strongly coupled to the ground state. Instead, it is conjectured that nonradiative decay involves a conformational change driven by the solvophobic effect. Thus, the rate of nonradiative decay in any given solvent increases with increasing surface accessibility (or molar volume) of the aryl substituent. Intramolecular energy transfer from pyrene or naphthalene residues to Bodipy is quantitative.


Assuntos
Compostos de Boro/química , Corantes/química , Eletroquímica , Modelos Moleculares , Análise Espectral/métodos
6.
Phys Chem Chem Phys ; 7(16): 3035-40, 2005 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16186907

RESUMO

The photophysical properties of 9-dicyanovinyljulolidine are sensitive to solvent viscosity but are little affected by changes in polarity. In fluid solution, the lifetime of the first-excited singlet state is very short and triplet state formation cannot be detected by laser flash photolysis. Decay of the excited singlet state is strongly activated and weak phosphorescence can be observed in a glassy matrix at 77 K. Temperature dependent 1H NMR studies indicate that the molecule undergoes slow internal rotation in solution, for which the activation energy has a value of ca. 35 kJ mol(-1). This process is unlikely to account for the poor fluorescence quantum yield found in fluid solution. Instead, it is considered that the target compound undergoes rapid rotation around the dicyanovinyl double bond from the excited singlet state. The rate of rotation depends weakly on the viscosity of the solvent in a range of linear alcohols at room temperature. This might represent the fact that the rotor is relatively small and can pack into cavities in the solvent structure. In glycerol, the rate of rotation is more sensitive to viscosity effects but a quite complex temperature dependence is observed in ethanol. Here, the rate is almost activationless in a glassy matrix and in fluid solution at high temperature but strongly activated at intermediate temperatures.


Assuntos
Eletroquímica/métodos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/efeitos da radiação , Fotoquímica/métodos , Compostos de Vinila/química , Compostos de Vinila/efeitos da radiação , Luz , Movimento (Física) , Solventes/química , Temperatura , Compostos de Vinila/análise , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA