RESUMO
Lyme disease is the most common vector-borne disease in the United States impacting the Northeast and Midwest at the highest rates. Recently, it has become established in southeastern and south-central regions of Canada. In these regions, Lyme disease is caused by Borrelia burgdorferi, which is transmitted to humans by an infected Ixodes scapularis tick. Understanding the parasite-host interaction is critical as the white-footed mouse is one of the most competent reservoir for B. burgdorferi. The cycle of infection is driven by tick larvae feeding on infected mice that molt into infected nymphs and then transmit the disease to another susceptible host such as mice or humans. Lyme disease in humans is generally caused by the bite of an infected nymph. The main aim of this investigation is to study how diapause delays and demographic and seasonal variability in tick births, deaths, and feedings impact the infection dynamics of the tick-mouse cycle. We model tick-mouse dynamics with fixed diapause delays and more realistic Erlang distributed delays through delay and ordinary differential equations (ODEs). To account for demographic and seasonal variability, the ODEs are generalized to a continuous-time Markov chain (CTMC). The basic reproduction number and parameter sensitivity analysis are computed for the ODEs. The CTMC is used to investigate the probability of Lyme disease emergence when ticks and mice are introduced, a few of which are infected. The probability of disease emergence is highly dependent on the time and the infected species introduced. Infected mice introduced during the summer season result in the highest probability of disease emergence.
Assuntos
Ixodes , Doença de Lyme , Humanos , Camundongos , Animais , Estações do Ano , Conceitos Matemáticos , Modelos Biológicos , Doença de Lyme/epidemiologiaRESUMO
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-ß, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-ß and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific.
RESUMO
PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.
Assuntos
Mapeamento Encefálico , Compreensão , Adulto , Humanos , Mapeamento Encefálico/métodos , Compreensão/fisiologia , Magnetoencefalografia , Imageamento por Ressonância Magnética , Lobo TemporalRESUMO
The dynamic nature of the COVID-19 pandemic has demanded a public health response that is constantly evolving due to the novelty of the virus. Many jurisdictions in the USA, Canada, and across the world have adopted social distancing and recommended the use of face masks. Considering these measures, it is prudent to understand the contributions of subpopulations-such as "silent spreaders"-to disease transmission dynamics in order to inform public health strategies in a jurisdiction-dependent manner. Additionally, we and others have shown that demographic and environmental stochasticity in transmission rates can play an important role in shaping disease dynamics. Here, we create a model for the COVID-19 pandemic by including two classes of individuals: silent spreaders, who either never experience a symptomatic phase or remain undetected throughout their disease course; and symptomatic spreaders, who experience symptoms and are detected. We fit the model to real-time COVID-19 confirmed cases and deaths to derive the transmission rates, death rates, and other relevant parameters for multiple phases of outbreaks in British Columbia (BC), Canada. We determine the extent to which SilS contributed to BC's early wave of disease transmission as well as the impact of public health interventions on reducing transmission from both SilS and SymS. To do this, we validate our model against an existing COVID-19 parameterized framework and then fit our model to clinical data to estimate key parameter values for different stages of BC's disease dynamics. We then use these parameters to construct a hybrid stochastic model that leverages the strengths of both a time-nonhomogeneous discrete process and a stochastic differential equation model. By combining these previously established approaches, we explore the impact of demographic and environmental variability on disease dynamics by simulating various scenarios in which a COVID-19 outbreak is initiated. Our results demonstrate that variability in disease transmission rate impacts the probability and severity of COVID-19 outbreaks differently in high- versus low-transmission scenarios.
Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Conceitos Matemáticos , Modelos Biológicos , Pandemias/prevenção & controle , SARS-CoV-2RESUMO
The Hantaviridae constitute a family of viruses harbored by mice, rats, shrews, voles, moles and bats. Intriguingly, only viruses harbored by mice and rats may cause disease in humans with up to 40% case fatality rate in the Americas. Transmission of virus from rodents to humans occurs via the respiratory route and results in replication of the virus in the microvascular endothelial cells of the lung or kidney. Understanding the replication kinetics of these viruses in various cell types and how replication is abrogated by the host is critical to the development of effective therapeutics for treatment for which there are none. We formulate several new ordinary differential equation (ODE) models to examine the replication kinetics of Prospect Hill orthohantavirus (PHV). The models are distinguished by the distribution of the viral replication delay. A new threshold, RGE, the genome equivalent replication number, is defined in terms of the model parameters. New final density relations are derived that associate RGE to the asymptotic number of virions in each model. All models are fit to real time (qRT)-PCR data of genomic RNA from PHV released from Vero E6 cells over 192 h. A sensitivity analysis of the parameters is performed and models are tested for best fit. Our findings provide a basis for future research into formulating more complex mathematical models for evaluation of the replication of hantaviruses in various cell types and sources.
Assuntos
Células Endoteliais , Orthohantavírus , Animais , Chlorocebus aethiops , Orthohantavírus/genética , Cinética , Camundongos , Ratos , Células Vero , Replicação ViralRESUMO
BACKGROUND AND OBJECTIVES: Naming decline after left temporal lobe epilepsy (TLE) surgery is common and difficult to predict. Preoperative language fMRI may predict naming decline, but this application is still lacking evidence. We performed a large multicenter cohort study of the effectiveness of fMRI in predicting naming deficits after left TLE surgery. METHODS: At 10 US epilepsy centers, 81 patients with left TLE were prospectively recruited and given the Boston Naming Test (BNT) before and ≈7 months after anterior temporal lobectomy. An fMRI language laterality index (LI) was measured with an auditory semantic decision-tone decision task contrast. Correlations and a multiple regression model were built with a priori chosen predictors. RESULTS: Naming decline occurred in 56% of patients and correlated with fMRI LI (r = -0.41, p < 0.001), age at epilepsy onset (r = -0.30, p = 0.006), age at surgery (r = -0.23, p = 0.039), and years of education (r = 0.24, p = 0.032). Preoperative BNT score and duration of epilepsy were not correlated with naming decline. The regression model explained 31% of the variance, with fMRI contributing 14%, with a 96% sensitivity and 44% specificity for predicting meaningful naming decline. Cross-validation resulted in an average prediction error of 6 points. DISCUSSION: An fMRI-based regression model predicted naming outcome after left TLE surgery in a large, prospective multicenter sample, with fMRI as the strongest predictor. These results provide evidence supporting the use of preoperative language fMRI to predict language outcome in patients undergoing left TLE surgery. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that fMRI language lateralization can help in predicting naming decline after left TLE surgery.
Assuntos
Epilepsia do Lobo Temporal , Idioma , Mapeamento Encefálico/métodos , Estudos de Coortes , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos ProspectivosRESUMO
Seasonal variation affects the dynamics of many infectious diseases including influenza, cholera and malaria. The time when infectious individuals are first introduced into a population is crucial in predicting whether a major disease outbreak occurs. In this investigation, we apply a time-nonhomogeneous stochastic process for a cholera epidemic with seasonal periodicity and a multitype branching process approximation to obtain an analytical estimate for the probability of an outbreak. In particular, an analytic estimate of the probability of disease extinction is shown to satisfy a system of ordinary differential equations which follows from the backward Kolmogorov differential equation. An explicit expression for the mean (resp. variance) of the first extinction time given an extinction occurs is derived based on the analytic estimate for the extinction probability. Our results indicate that the probability of a disease outbreak, and mean and standard derivation of the first time to disease extinction are periodic in time and depend on the time when the infectious individuals or free-living pathogens are introduced. Numerical simulations are then carried out to validate the analytical predictions using two examples of the general cholera model. At the end, the developed theoretical results are extended to more general models of infectious diseases.
Assuntos
Cólera , Epidemias , Modelos Biológicos , Doenças Transmissíveis/epidemiologia , Humanos , Processos EstocásticosRESUMO
Superspreaders (individuals with a high propensity for disease spread) have played a pivotal role in recent emerging and re-emerging diseases. In disease outbreak studies, host heterogeneity based on demographic (e.g. age, sex, vaccination status) and environmental (e.g. climate, urban/rural residence, clinics) factors are critical for the spread of infectious diseases, such as Ebola and Middle East Respiratory Syndrome (MERS). Transmission rates can vary as demographic and environmental factors are altered naturally or due to modified behaviors in response to the implementation of public health strategies. In this work, we develop stochastic models to explore the effects of demographic and environmental variability on human-to-human disease transmission rates among superspreaders in the case of Ebola and MERS. We show that the addition of environmental variability results in reduced probability of outbreak occurrence, however the severity of outbreaks that do occur increases. These observations have implications for public health strategies that aim to control environmental variables.
RESUMO
Zoonotic infectious diseases are spread from animals to humans. It is estimated that over 60% of human infectious diseases are zoonotic and 75% of them are emerging zoonoses. The majority of emerging zoonotic infectious diseases are caused by viruses including avian influenza, rabies, Ebola, coronaviruses and hantaviruses. Spillover of infection from animals to humans depends on a complex transmission pathway, which is influenced by epidemiological and environmental processes. In this investigation, the focus is on direct transmission between animals and humans and the effects of seasonal variations on the transmission and recovery rates. Fluctuations in transmission and recovery, besides being influenced by physiological processes and behaviors of pathogen and host, are driven by seasonal variations in temperature, humidity or rainfall. A new time-nonhomogeneous stochastic process is formulated for infectious disease spread from animals to humans when transmission and recovery rates are time-periodic. A branching process approximation is applied near the disease-free state to predict the probability of the first spillover event from animals to humans. This probability is a periodic function of the time when infection is introduced into the animal population. It is shown that the highest risk of a spillover depends on a combination of animal to human transmission, animal to animal transmission and animal recovery. The results are applied to a stochastic model for avian influenza with spillover from domestic poultry to humans.
RESUMO
Seasonal changes in temperature, humidity, and rainfall affect vector survival and emergence of mosquitoes and thus impact the dynamics of vector-borne disease outbreaks. Recent studies of deterministic and stochastic epidemic models with periodic environments have shown that the average basic reproduction number is not sufficient to predict an outbreak. We extend these studies to time-nonhomogeneous stochastic dengue models with demographic variability wherein the adult vectors emerge from the larval stage vary periodically. The combined effects of variability and periodicity provide a better understanding of the risk of dengue outbreaks. A multitype branching process approximation of the stochastic dengue model near the disease-free periodic solution is used to calculate the probability of a disease outbreak. The approximation follows from the solution of a system of differential equations derived from the backward Kolmogorov differential equation. This approximation shows that the risk of a disease outbreak is also periodic and depends on the particular time and the number of the initial infected individuals. Numerical examples are explored to demonstrate that the estimates of the probability of an outbreak from that of branching process approximations agree well with that of the continuous-time Markov chain. In addition, we propose a simple stochastic model to account for the effects of environmental variability on the emergence of adult vectors from the larval stage.
Assuntos
Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Modelos Biológicos , Mosquitos Vetores/virologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Demografia , Dengue/virologia , Vírus da Dengue/patogenicidade , Meio Ambiente , Interações entre Hospedeiro e Microrganismos , Humanos , Cadeias de Markov , Conceitos Matemáticos , Mosquitos Vetores/crescimento & desenvolvimento , Estações do Ano , Processos EstocásticosRESUMO
Factors such as seasonality and spatial connectivity affect the spread of an infectious disease. Accounting for these factors in infectious disease models provides useful information on the times and locations of greatest risk for disease outbreaks. In this investigation, stochastic multi-patch epidemic models are formulated with seasonal and demographic variability. The stochastic models are used to investigate the probability of a disease outbreak when infected individuals are introduced into one or more of the patches. Seasonal variation is included through periodic transmission and dispersal rates. Multi-type branching process approximation and application of the backward Kolmogorov differential equation lead to an estimate for the probability of a disease outbreak. This estimate is also periodic and depends on the time, the location, and the number of initial infected individuals introduced into the patch system as well as the magnitude of the transmission and dispersal rates and the connectivity between patches. Examples are given for seasonal transmission and dispersal in two and three patches.
Assuntos
Doenças Transmissíveis , Epidemias , Modelos Biológicos , Estações do Ano , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Demografia , Humanos , Conceitos Matemáticos , Processos EstocásticosRESUMO
OBJECTIVE: To define left temporal lobe regions where surgical resection produces a persistent postoperative decline in naming visual objects. METHODS: Pre- and postoperative brain magnetic resonance imaging data and picture naming (Boston Naming Test) scores were obtained prospectively from 59 people with drug-resistant left temporal lobe epilepsy. All patients had left hemisphere language dominance at baseline and underwent surgical resection or ablation in the left temporal lobe. Postoperative naming assessment occurred approximately 7 months after surgery. Surgical lesions were mapped to a standard template, and the relationship between presence or absence of a lesion and the degree of naming decline was tested at each template voxel while controlling for effects of overall lesion size. RESULTS: Patients declined by an average of 15% in their naming score, with wide variation across individuals. Decline was significantly related to damage in a cluster of voxels in the ventral temporal lobe, located mainly in the fusiform gyrus approximately 4-6 cm posterior to the temporal tip. Extent of damage to this region explained roughly 50% of the variance in outcome. Picture naming decline was not related to hippocampal or temporal pole damage. SIGNIFICANCE: The results provide the first statistical map relating lesion location in left temporal lobe epilepsy surgery to picture naming decline, and they support previous observations of transient naming deficits from electrical stimulation in the basal temporal cortex. The critical lesion is relatively posterior and could be avoided in many patients undergoing left temporal lobe surgery for intractable epilepsy.
Assuntos
Anomia/fisiopatologia , Lobectomia Temporal Anterior/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/cirurgia , Complicações Pós-Operatórias/fisiopatologia , Lobo Temporal/cirurgia , Adulto , Anomia/etiologia , Lobectomia Temporal Anterior/efeitos adversos , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto JovemRESUMO
This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, respectively) from the Epilepsy Connectome Project underwent neuropsychological assessment, clinical interview, and high resolution 3T structural and resting-state functional MRI. A comprehensive neuropsychological test battery was reduced to core cognitive domains (language, memory, executive, visuospatial, motor speed) which were then subjected to cluster analysis. The resulting cognitive subgroups were compared in regard to sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and functional connectivity. Three cognitive subgroups were identified (intact, language/memory/executive function impairment, generalized impairment) which differed significantly, in a systematic fashion, across multiple features. The generalized impairment group was characterized by an earlier age at medication initiation (P < 0.05), fewer patient (P < 0.001) and parental years of education (P < 0.05), greater racial diversity (P < 0.05), and greater number of lifetime generalized seizures (P < 0.001). The three groups also differed in an orderly manner across total intracranial (P < 0.001) and bilateral cerebellar cortex volumes (P < 0.01), and rate of bilateral hippocampal atrophy (P < 0.014), but minimally in regional measures of cortical volume or thickness. In contrast, large-scale patterns of cortical-subcortical covariance networks revealed significant differences across groups in global and local measures of community structure and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster membership, with the most abnormal patterns of connectivity evident in the generalized impairment group and no significant differences from controls in the cognitively intact group. Overall, the distinct underlying cognitive phenotypes of temporal lobe epilepsy harbor systematic relationships with clinical, sociodemographic and neuroimaging correlates. Cognitive phenotype variations in patient and familial education and ethnicity, with linked variations in total intracranial volume, raise the question of an early and persisting socioeconomic-status related neurodevelopmental impact, with additional contributions of clinical epilepsy factors (e.g., lifetime generalized seizures). The neuroimaging features of cognitive phenotype membership are most notable for disrupted large scale cortical-subcortical networks and patterns of functional connectivity with bilateral hippocampal and cerebellar atrophy. The cognitive taxonomy of temporal lobe epilepsy appears influenced by features that reflect the combined influence of socioeconomic, neurodevelopmental and neurobiological risk factors.
Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Cognição , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , FenótipoRESUMO
Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (pâ¯<â¯0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (pâ¯<â¯0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe.
Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroticismo/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Conectoma/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Lobo Frontal/fisiopatologia , Lateralidade Funcional/fisiologia , Humanos , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Lobo Temporal/fisiopatologiaRESUMO
The present study assessed the effect of nearby construction activity on the responses of rat middle cerebral arteries (MCA)to the endothelium-dependent vasodilator acetylcholine and the NO donor sodium nitroprusside (SNP) and the activity of MaxiK potassium channels in MCA smooth muscle cells from male Sprague-Dawley rats. Two monitoring systems were used to assess vibrations in the animal rooms during and immediately after construction activities near the research building where the animal facility is located. One was a commercially available system; the other was a Raspberry-Pi (RPi)-based vibration monitoring system designed in our laboratory that included a small computing unit attached to a rolling sensor (low sensitivity) and a piezoelectric film sensor (high sensitivity). Both systems recorded increased levels of vibration during construction activity outside the building. During the construction period, vasodilator responses to acetylcholine and SNP were abolished, and MaxiK single-channel current opening frequency and open-state probability in cell-attached patches of isolated MCA myocytes were dramatically decreased. Recovery of acetylcholine- and SNP-induced dilation was minimal in MCA from rats studied after completion of construction but housed in the animal facility during construction, whereas responses to acetylcholine and SNP were intact in rats purchased, housed, and studied after construction. Baseline levels of vibration returned after the completion of construction, concomitant with the recovery of normal endothelium-dependent vasodilation to acetylcholine and of NO sensitivity assessed by using SNP in MCA from animals obtained after construction. The results of this study indicate that the vibration associated with nearby construction can have highly disruptive effects on crucial physiologic phenotypes.
RESUMO
Numerous studies have shown that surgical resection of the left anterior temporal lobe (ATL) is associated with a decline in object naming ability (Hermann et al., 1999). In contrast, few studies have examined the effects of left ATL surgery on auditory description naming (ADN) or category-specific naming. Compared with object naming, which loads heavily on visual recognition processes, ADN provides a more specific measure of concept retrieval. The present study examined ADN declines in a large group of patients who were tested before and after left ATL surgery, using a 2â¯×â¯2â¯×â¯2 factorial manipulation of uniqueness (common vs. proper nouns), taxonomic category (living vs. nonliving things), and time (pre- vs. postsurgery). Significant declines occurred across all categories but were substantially larger for proper living (PL) concepts, i.e., famous individuals. The disproportionate decline in PL noun naming relative to other conditions is consistent with the notion that the left ATL is specialized not only for retrieval of unique entity concepts, but also plays a role in processing social concepts and person-specific features.
Assuntos
Lobectomia Temporal Anterior/psicologia , Epilepsia Resistente a Medicamentos/psicologia , Epilepsia Resistente a Medicamentos/cirurgia , Idioma , Reconhecimento Psicológico , Vocabulário , Adulto , Lobectomia Temporal Anterior/tendências , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos Prospectivos , Reconhecimento Psicológico/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgiaRESUMO
When investigating the body's mechanisms for regulating cerebral blood flow, a relative measurement of microcirculatory blood flow can be obtained using laser Doppler flowmetry (LDF). This paper demonstrates a closed skull preparation that allows cerebral blood flow to be assessed without penetrating the skull or installing a chamber or cerebral window. To evaluate autoregulatory mechanisms, a model of controlled blood pressure reduction via graded hemorrhage can be utilized while simultaneously employing LDF. This enables the real time tracking of the relative changes in the blood flow in response to reductions in arterial blood pressure produced by the withdrawal of circulating blood volume. This paradigm is a valuable approach to study cerebral blood flow autoregulation during reductions in arterial blood pressure and, with minor modifications in the protocol, is also valuable as an experimental model of hemorrhagic shock. In addition to evaluating autoregulatory responses, LDF can be used to monitor the cortical blood flow when investigating metabolic, myogenic, endothelial, humoral, or neural mechanisms that regulate cerebral blood flow and the impact of various experimental interventions and pathological conditions on cerebral blood flow.
Assuntos
Circulação Cerebrovascular/fisiologia , Homeostase , Fluxometria por Laser-Doppler/métodos , Anestesia , Animais , Artérias/fisiopatologia , Pressão Sanguínea/fisiologia , Hemorragia/fisiopatologia , Homeostase/fisiologia , Lasers , Masculino , Microcirculação/fisiologia , Ratos Sprague-DawleyRESUMO
If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models.
Assuntos
Coinfecção/epidemiologia , Interações Hospedeiro-Patógeno/fisiologia , Infecções/epidemiologia , Animais , Estudos Transversais , Epidemias/estatística & dados numéricos , Humanos , Modelos Biológicos , PrevalênciaRESUMO
Co-infection of plant hosts by two or more viruses is common in agricultural crops and natural plant communities. A variety of models have been used to investigate the dynamics of co-infection which track only the disease status of infected and co-infected plants, and which do not explicitly track the density of inoculative vectors. Much less attention has been paid to the role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic and antagonistic interactions. In this investigation, a general epidemiological model is formulated for one vector species and one plant species with potential co-infection in the host plant by two viruses. The basic reproduction number provides conditions for successful invasion of a single virus. We derive a new invasion threshold which provides conditions for successful invasion of a second virus. These two thresholds highlight some key epidemiological parameters important in vector transmission. To illustrate the flexibility of our model, we examine numerically two special cases of viral invasion. In the first case, one virus species depends on an autonomous virus for its successful transmission and in the second case, both viruses are unable to invade alone but can co-infect the host plant when prevalence is high.
Assuntos
Coinfecção , Vetores de Doenças , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Algoritmos , Animais , Modelos BiológicosRESUMO
Behavioral and personality disorders in temporal lobe epilepsy (TLE) have been a topic of interest and controversy for decades, with less attention paid to alterations in normal personality structure and traits. In this investigation, core personality traits (the Big 5) and their neurobiological correlates in TLE were explored using the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) and structural magnetic resonance imaging (MRI) through the Epilepsy Connectome Project (ECP). NEO-FFI scores from 67 individuals with TLE (34.6⯱â¯9.5â¯years; 67% women) were compared to 31 healthy controls (32.8⯱â¯8.9â¯years; 41% women) to assess differences in the Big 5 traits (agreeableness, openness, conscientiousness, neuroticism, and extraversion). Individuals with TLE showed significantly higher neuroticism, with no significant differences on the other traits. Neural correlates of neuroticism were then determined in participants with TLE including cortical and subcortical volumes. Distributed reductions in cortical gray matter volumes were associated with increased neuroticism. Subcortically, hippocampal and amygdala volumes were negatively associated with neuroticism. These results offer insight into alterations in the Big 5 personality traits in TLE and their brain-related correlates.