Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 2: 736806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295471

RESUMO

Objective: Complex regional pain syndrome (CRPS) is a common pain condition characterized by the changes in the brain that are not yet addressed by conventional treatment regimens. Repetitive peripheral magnetic stimulation (rPMS) of muscles is painless and non-invasive and can influence these changes (the induction of brain plasticity) to reduce pain and improve motricity. In patients with CRPS, this open-label pilot study tested rPMS after-effects on the pain intensity and sensorimotor control of the upper limb along with the excitability changes of the primary motor cortex (M1). Methods: Eight patients with CRPS were enrolled in a single-session program. Patients were tested at pre- and post-rPMS over the flexor digitorum superficialis (FDS) muscle. The clinical outcomes were pain intensity, proprioception, active range of motion (ROM), and grip strength. M1 excitability was tested using the single- and paired-pulse transcranial magnetic stimulation (TMS) of M1. Results: In our small sample study, rPMS reduced instant and week pain, improved proprioception and ROM, and reduced the hemispheric imbalance of several TMS outcomes. The more M1 contralateral to the CRPS side was hyperactivated at baseline, the more pain was reduced. Discussion: This open-label pilot study provided promising findings for the use of rPMS in CRPS with a focus on M1 plastic changes. Future randomized, placebo-controlled clinical trials should confirm the existence of a causal relationship between the TMS outcomes and post-rPMS decrease of pain. This will favor the development of personalized treatments of peripheral non-invasive neurostimulation in CRPS.

2.
Front Pain Res (Lausanne) ; 2: 732343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295500

RESUMO

Background: Complex regional pain syndrome (CRPS) is a rare debilitating disorder characterized by severe pain affecting one or more limbs. CRPS presents a complex multifactorial physiopathology. The peripheral and sensorimotor abnormalities reflect maladaptive changes of the central nervous system. These changes of volume, connectivity, activation, metabolism, etc., could be the keys to understand chronicization, refractoriness to conventional treatment, and developing more efficient treatments. Objective: This review discusses the use of non-pharmacological, non-invasive neurostimulation techniques in CRPS, with regard to the CRPS physiopathology, brain changes underlying chronicization, conventional approaches to treat CRPS, current evidence, and mechanisms of action of peripheral and brain stimulation. Conclusion: Future work is warranted to foster the evidence of the efficacy of non-invasive neurostimulation in CRPS. It seems that the approach has to be individualized owing to the integrity of the brain and corticospinal function. Non-invasive neurostimulation of the brain or of nerve/muscles/spinal roots, alone or in combination with conventional therapy, represents a fertile ground to develop more efficient approaches for pain management in CRPS.

3.
J Neurol Sci ; 393: 18-23, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30098499

RESUMO

BACKGROUND AND OBJECTIVE: A very preterm birth can induce deleterious neurophysiological consequences beyond childhood; alterations of the corpus callosum (CC) are reported in adolescents born very preterm along with cognitive impairments. The question remains whether neurophysiological alterations are still detectable in adulthood such as an alteration in CC inhibitory function. The aim of the present study was thus to examine transcallosal inhibition in young adults born very preterm compared to counterparts born at term. STUDY PARTICIPANTS & METHODS: Transcallosal inhibition was probed by measuring the ipsilateral silent period (iSP) using transcranial magnetic stimulation (TMS) in 13 young adults born at 33w of gestation or less (20 ±â€¯3. 2y) and 12 young adults born at term (22 ±â€¯1. 75y). Single high-intensity TMS were delivered to the primary motor cortex (M1) ipsilateral to the preactivated first dorsal interosseous (FDI) muscle. Occurrence, latency, and duration of iSP were measured in the FDI EMG activity, for both hemispheres alternatively (10-12 trials each) along with their resting motor threshold (RMT). RESULTS: In individuals born very preterm as compared to individuals born at term, ISP occurred less frequently (p < .0001), its latency was longer (p = .004), especially in the non-dominant hemisphere, its duration shorter (p < .0001), and RMT was higher in the non-dominant M1 than in the dominant. CONCLUSIONS: Impairment of transcallosal inhibition along with asymmetry of M1 excitability in young adults born very preterm as compared to those born at term underline that neurophysiological consequences of a preterm birth can still be detected in early adulthood.


Assuntos
Corpo Caloso/fisiopatologia , Recém-Nascido Prematuro , Estimulação Magnética Transcraniana , Adolescente , Adulto , Estudos de Coortes , Corpo Caloso/crescimento & desenvolvimento , Eletromiografia , Feminino , Lateralidade Funcional , Humanos , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Prematuro/fisiologia , Masculino , Córtex Motor/crescimento & desenvolvimento , Córtex Motor/fisiopatologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiopatologia , Inibição Neural , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA