Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 221, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388690

RESUMO

Intersectional social determinants including ethnicity are vital in health research. We curated a population-wide data resource of self-identified ethnicity data from over 60 million individuals in England primary care, linking it to hospital records. We assessed ethnicity data in terms of completeness, consistency, and granularity and found one in ten individuals do not have ethnicity information recorded in primary care. By linking to hospital records, ethnicity data were completed for 94% of individuals. By reconciling SNOMED-CT concepts and census-level categories into a consistent hierarchy, we organised more than 250 ethnicity sub-groups including and beyond "White", "Black", "Asian", "Mixed" and "Other, and found them to be distributed in proportions similar to the general population. This large observational dataset presents an algorithmic hierarchy to represent self-identified ethnicity data collected across heterogeneous healthcare settings. Accurate and easily accessible ethnicity data can lead to a better understanding of population diversity, which is important to address disparities and influence policy recommendations that can translate into better, fairer health for all.


Assuntos
Etnicidade , Saúde da População , Humanos , Inglaterra
2.
Int J Med Inform ; 175: 105088, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156169

RESUMO

OBJECTIVE: Disease comorbidity is a major challenge in healthcare affecting the patient's quality of life and costs. AI-based prediction of comorbidities can overcome this issue by improving precision medicine and providing holistic care. The objective of this systematic literature review was to identify and summarise existing machine learning (ML) methods for comorbidity prediction and evaluate the interpretability and explainability of the models. MATERIALS AND METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework was used to identify articles in three databases: Ovid Medline, Web of Science and PubMed. The literature search covered a broad range of terms for the prediction of disease comorbidity and ML, including traditional predictive modelling. RESULTS: Of 829 unique articles, 58 full-text papers were assessed for eligibility. A final set of 22 articles with 61 ML models was included in this review. Of the identified ML models, 33 models achieved relatively high accuracy (80-95%) and AUC (0.80-0.89). Overall, 72% of studies had high or unclear concerns regarding the risk of bias. DISCUSSION: This systematic review is the first to examine the use of ML and explainable artificial intelligence (XAI) methods for comorbidity prediction. The chosen studies focused on a limited scope of comorbidities ranging from 1 to 34 (mean = 6), and no novel comorbidities were found due to limited phenotypic and genetic data. The lack of standard evaluation for XAI hinders fair comparisons. CONCLUSION: A broad range of ML methods has been used to predict the comorbidities of various disorders. With further development of explainable ML capacity in the field of comorbidity prediction, there is a significant possibility of identifying unmet health needs by highlighting comorbidities in patient groups that were not previously recognised to be at risk for particular comorbidities.


Assuntos
Inteligência Artificial , Qualidade de Vida , Humanos , Aprendizado de Máquina , Comorbidade , Definição da Elegibilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA