Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38658136

RESUMO

BACKGROUND: Among plasma biomarkers for Alzheimer's disease (AD), pTau181 and pTau217 are the most promising. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors. METHOD: pTau181 and pTau217 were quantified using, Quanterix and ALZpath, SIMOA assays in the well-characterised prospective multicentre BALTAZAR (Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk) cohort of participants with mild cognitive impairment (MCI). RESULTS: Among participants with MCI, 55% were Aß+ and 29% developed dementia due to AD. pTau181 and pTau217 were higher in the Aß+ population with fold change of 1.5 and 2.7, respectively. MCI that converted to AD also had higher levels than non-converters, with HRs of 1.38 (1.26 to 1.51) for pTau181 compared with 8.22 (5.45 to 12.39) for pTau217. The area under the curve for predicting Aß+ was 0.783 (95% CI 0.721 to 0.836; cut-point 2.75 pg/mL) for pTau181 and 0.914 (95% CI 0.868 to 0.948; cut-point 0.44 pg/mL) for pTau217. The high predictive power of pTau217 was not improved by adding age, sex and apolipoprotein E ε4 (APOEε4) status, in a logistic model. Age, APOEε4 and renal dysfunction were associated with pTau levels, but the clinical performance of pTau217 was only marginally altered by these factors. Using a two cut-point approach, a 95% positive predictive value for Aß+ corresponded to pTau217 >0.8 pg/mL and a 95% negative predictive value at <0.23 pg/mL. At these two cut-points, the percentages of MCI conversion were 56.8% and 9.7%, respectively, while the annual rates of decline in Mini-Mental State Examination were -2.32 versus -0.65. CONCLUSIONS: Plasma pTau217 and pTau181 both correlate with AD, but the fold change in pTau217 makes it better to diagnose cerebral amyloidosis, and predict cognitive decline and conversion to AD dementia.

2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139190

RESUMO

Neurofilament light chain (NfL) is a potential diagnostic and prognostic plasma biomarker for numerous neurological diseases including Alzheimer's disease (AD). In this study, we investigated the relationship between baseline plasma concentration of Nfl and Mild Cognitive Impairment in participants who did and did not have a clinically determined diagnosis of dementia by the end of the three-year study. Additionally, we explored the connection between baseline plasma concentration of NfL and AD dementia patients, considering their demographics, clinical features, and cognitive profiles. A total of 350 participants from the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) multicenter prospective study were investigated: 161 AD dementia participants and 189 MCI participants (of which 141 had amnestic MCI and 48 non-amnestic MCI). Plasma biomarkers were measured at baseline and the progression of clinical and cognitive profiles was followed over the three years of follow-up. Baseline plasma NfL concentration increased across the Alzheimer's disease continuum with a mean NfL value of 17.1 ng/mL [SD = 6.1] in non-amnestic MCI, 20.7 ng/mL [SD = 12.0] in amnestic MCI, and 23.1 ng/mL [SD = 22.7] in AD dementia patients. Plasma NfL concentration correlated with age, body mass index (BMI), and global cognitive performance and decline, as measured by the Mini-Mental State Examination (MMSE). MMSE scores decreased in parallel with increasing plasma NfL concentration, independently of age and BMI. However, NfL concentration did not predict MCI participants' conversion to dementia within three years. Discussion: Baseline plasma NfL concentration is associated with cognitive status along the AD continuum, suggesting its usefulness as a potential informative biomarker for cognitive decline follow-up in patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Estudos Prospectivos , Filamentos Intermediários , Proteínas de Neurofilamentos , Disfunção Cognitiva/diagnóstico , Biomarcadores , Peptídeos beta-Amiloides , Progressão da Doença , Proteínas tau
3.
Clin Chem ; 69(9): 1072-1083, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37654065

RESUMO

BACKGROUND: Among blood biomarkers, phospho-tau181 (pTau181) is one of the most efficient in detecting Alzheimer disease across its continuum. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors. METHODS: Here we tested the Lumipulse assay for plasma pTau181 in mild cognitive impairment (MCI) participants from the Baltazar prospective cohort. We compared the performance of this assay to the corresponding Simoa assay for the prediction of conversion to dementia. We also evaluated the association with various routine blood parameters indicative of comorbidities. RESULTS: Lumipulse and Simoa gave similar results overall, with hazard ratios for conversion to dementia of 3.48 (95% CI, 2.23-5.45) and 3.70 (95%CI, 2.39-5.87), respectively. However, the 2 tests differ somewhat in terms of the patients identified, suggesting that their use may be complementary. When combined with age, sex, and apolipoprotein E (APOE)ε4 status, areas under the curves for conversion detection were 0.736 (95% CI, 0.682-0.791) for Lumipulse and 0.733 (95% CI, 0.679-0.788) for Simoa. Plasma pTau181 was independently associated with renal dysfunction (assessed by creatinine and glomerular filtration) for both assays. Cardiovascular factors (adiponectin and cholesterol), nutritional, and inflammatory markers (total protein content, C-reactive protein) also impacted plasma pTau181 concentration, although more so with the Simoa than with the Lumipulse assay. CONCLUSIONS: Plasma pTau181 measured using the fully automated Lumipulse assay performs as well as the Simoa assay for detecting conversion to dementia of MCI patients within 3 years and Lumipulse is less affected by comorbidities. This study suggests a pathway to routine noninvasive in vitro diagnosis-approved testing to contribute to the management of Alzheimer disease. CLINICALTRIALS.GOV REGISTRATION NUMBER: NCT01315639.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Estudos Prospectivos , Plasma , Adiponectina , Disfunção Cognitiva/diagnóstico
4.
J Neurol Neurosurg Psychiatry ; 94(6): 411-419, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012068

RESUMO

OBJECTIVES: Plasma P-tau181 is an increasingly established diagnostic marker for Alzheimer's disease (AD). Further validation in prospective cohorts is still needed, as well as the study of confounding factors that could influence its blood level. METHODS: This study is ancillary to the prospective multicentre Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk cohort that enrolled participants with mild cognitive impairment (MCI) who were examined for conversion to dementia for up to 3 years. Plasma Ptau-181 was measured using the ultrasensitive Quanterix HD-X assay. RESULTS: Among 476 MCI participants, 67% were amyloid positive (Aß+) at baseline and 30% developed dementia. Plasma P-tau181 was higher in the Aß+ population (3.9 (SD 1.4) vs 2.6 (SD 1.4) pg/mL) and in MCI that converted to dementia (3.8 (SD 1.5) vs 2.9 (SD 1.4) pg/mL). The addition of plasma P-tau181 to a logistic regression model combining age, sex, APOEε4 status and Mini Mental State Examination improved predictive performance (areas under the curve 0.691-0.744 for conversion and 0.786-0.849 for Aß+). The Kaplan-Meier curve of conversion to dementia, according to the tertiles of plasma P-tau181, revealed a significant predictive value (Log rank p<0.0001) with an HR of 3.8 (95% CI 2.5 to 5.8). In addition, patients with plasma P-Tau(181) ≤2.32 pg/mL had a conversion rate of less than 20% over a 3-year period. Using a linear regression approach, chronic kidney disease, creatinine and estimated glomerular filtration rate were independently associated with plasma P-tau181 concentrations. CONCLUSIONS: Plasma P-tau181 effectively detects Aß+ status and conversion to dementia, confirming the value of this blood biomarker for the management of AD. However, renal function significantly modifies its levels and may thus induce diagnostic errors if not taken into account.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Proteínas tau , Peptídeos beta-Amiloides , Estudos Prospectivos , Disfunção Cognitiva/diagnóstico , Biomarcadores , Rim/fisiologia
6.
Alzheimers Dement ; 18(12): 2537-2550, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35187794

RESUMO

INTRODUCTION: Blood-based biomarkers are the next challenge for Alzheimer's disease (AD) diagnosis and prognosis. METHODS: Mild cognitive impairment (MCI) participants (N = 485) of the BALTAZAR study, a large-scale longitudinal multicenter cohort, were followed-up for 3 years. A total of 165 of them converted to dementia (95% AD). Associations of conversion and plasma amyloid beta (Aß)1-42 , Aß1-40 , Aß1-42 /Aß1-40 ratio were analyzed with logistic and Cox models. RESULTS: Converters to dementia had lower level of plasma Aß1-42 (37.1 pg/mL [12.5] vs. 39.2 [11.1] , P value = .03) and lower Aß1-42 /Aß1-40 ratio than non-converters (0.148 [0.125] vs. 0.154 [0.076], P value = .02). MCI participants in the highest quartile of Aß1-42 /Aß1-40 ratio (>0.169) had a significant lower risk of conversion (hazard ratio adjusted for age, sex, education, apolipoprotein E ε4, hippocampus atrophy = 0.52 (95% confidence interval [0.31-0.86], P value = .01). DISCUSSION: In this large cohort of MCI subjects we identified a threshold for plasma Aß1-42 /Aß1-40 ratio that may detect patients with a low risk of conversion to dementia within 3 years.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico , Doença de Alzheimer/diagnóstico , Apolipoproteína E4 , Biomarcadores , Fragmentos de Peptídeos , Proteínas tau , Progressão da Doença
7.
Sci Rep ; 9(1): 20138, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882891

RESUMO

The prevalence of cognitive decline is increasing as the ageing population is considerably growing. Restricting this age-associated process has become a challenging public health issue. The age-related increase in oxidative stress plays a major role in cognitive decline, because of its harmful effect on functional plasticity of the brain, such as long-term potentiation (LTP). Here, we show that citrulline (Cit) has powerful antioxidant properties that can limit ex vivo oxidative stress-induced LTP impairment in the hippocampus. We also illustrate that a three-month Cit supplementation has a protective effect on LTP in aged rats in vivo. The identification of a Cit oxidation byproduct in vitro suggests that the antioxidant properties of Cit could result from its own oxidation. Cit supplementation may be a promising preventive nutritional approach to limit age-related cognitive decline.


Assuntos
Envelhecimento , Citrulina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
8.
Cell Mol Life Sci ; 76(24): 4995-5009, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31139847

RESUMO

Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Simportadores/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Endocitose/genética , Endossomos/genética , Endossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios/metabolismo , Transporte Proteico , Receptores Androgênicos/genética , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
10.
Front Aging Neurosci ; 10: 297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327597

RESUMO

A combination of low cerebrospinal fluid (CSF) Amyloid ß1-42 (Aß1-42) and high Total-Tau (T-Tau) and Phosphorylated-Tau (P-Tau) occurs at a prodromal stage of Alzheimer's disease (AD) and recent findings suggest that network abnormalities and interneurons dysfunction contribute to cognitive deficits. Somatostatin (SOM) and Neuropeptide Y (NPY) are two neuropeptides which are expressed in GABAergic interneurons with different fates in AD the former only being markedly affected. The aim of this study was to analyze CSF SOM, NPY and CSF Aß1-42; T-Tau, P-Tau relationships in 43 elderly mild cognitively impairment (MCI) participants from the Biomarker of AmyLoïd pepTide and AlZheimer's disease Risk (BALTAZAR) cohort. In these samples, CSF SOM and CSF Aß1-42 on the one hand, and CSF NPY and CSF T-Tau and P-Tau on the other hand are positively correlated. CSF SOM and NPY concentrations should be further investigated to determine if they can stand for early AD biomarkers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier #NCT01315639.

11.
Alzheimers Dement ; 14(7): 858-868, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29458036

RESUMO

INTRODUCTION: Diagnostic relevance of plasma amyloid ß (Aß) for Alzheimer's disease (AD) process yields conflicting results. The objective of the study was to assess plasma levels of Aß42 and Aß40 in amnestic mild cognitive impairment (MCI), nonamnestic MCI, and AD patients and to investigate relationships between peripheral and central biomarkers. METHODS: One thousand forty participants (417 amnestic MCI, 122 nonamnestic MCI, and 501 AD) from the Biomarker of AmyLoïd pepTide and AlZheimer's diseAse Risk multicenter prospective study with cognition, plasma, cerebrospinal fluid (CSF), and magnetic resonance imaging assessments were included. RESULTS: Plasma Aß1-42 and Aß1-40 were lower in AD (36.9 [11.7] and 263 [80] pg/mL) than in amnestic MCI (38.2 [11.9] and 269 [68] pg/mL) than in nonamnestic MCI (39.7 [10.5] and 272 [52] pg/mL), respectively (P = .01 for overall difference between groups for Aß1-42 and P = .04 for Aß1-40). Globally, plasma Aß1-42 correlated with age, Mini-Mental State Examination, and APOE Îµ4 allele. Plasma Aß1-42 correlated with all CSF biomarkers in MCI but only with CSF Aß42 in AD. DISCUSSION: Plasma Aß was associated with cognitive status and CSF biomarkers, suggesting the interest of plasma amyloid biomarkers for diagnosis purpose.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Biomarcadores , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Prospectivos
12.
Neurobiol Dis ; 109(Pt A): 11-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28923597

RESUMO

Remyelination is an endogenous regenerative process of myelin repair in the central nervous system (CNS) with limited efficacy in demyelinating disorders. As strategies enhancing endogenous remyelination become a therapeutic challenge, we have focused our study on α-secretase-induced sAPPα release, a soluble endogenous protein with neuroprotective and neurotrophic properties. However, the role of sAPPα in remyelination is not known. Therefore, we investigated the remyelination potential of α-secretase-induced sAPPα release following CNS demyelination in mice. Acute demyelination was induced by feeding mice with cuprizone (CPZ) for 5weeks. To test the protective effect and the remyelination potential of etazolate, an α-secretase activator, we designed two treatment protocols. Etazolate was administrated either during the last two weeks or at the end of the CPZ intoxication. In both protocols, etazolate restored the number of myelinated axons in corpus callosum with a corresponding increase in the amount of MBP, one of the major myelin proteins in the brain. We also performed ex vivo studies to decipher etazolate's mechanism of action in a lysolecithin-induced demyelination model using organotypic culture of cerebellar slices. Etazolate treatment was able to i) enhance the release of sAPPα in the culture media of demyelinated slices, ii) protect myelinated axons from demyelination, iii) increase the number of mature oligodendrocytes, iv) promote the reappearance of the paired Caspr+ adjacent to the nodes of Ranvier and v) increase the percentage of myelinated axons with short internodes, an indicator of remyelination. Etazolate failed to promote all the aforementioned effects in the presence of GI254023X, an α-secretase inhibitor. Moreover, the protective effects of etazolate in demyelinated slices were mimicked by sAPPα treatment in a dose-dependent manner. In conclusion, etazolate-induced sAPPα release protects myelinated axons from demyelination while also promoting remyelination. This work, thus, highlights the therapeutic potential of strategies that enhance sAPPα release in demyelinating disorders.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Etazolato/administração & dosagem , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Remielinização , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Encéfalo/efeitos dos fármacos , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/ultraestrutura , Cuprizona/administração & dosagem , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/prevenção & controle , Lisofosfatidilcolinas/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/ultraestrutura
13.
Mol Neurobiol ; 55(7): 5594-5610, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28983842

RESUMO

Amyloid precursor protein (APP) is cleaved not only to generate the amyloid peptide (Aß), involved in neurodegenerative processes, but can also be metabolized by alpha secretase to produce and release soluble N-terminal APP (sAPPα), which has many properties including the induction of axonal elongation and neuroprotection. The mechanisms underlying the properties of sAPPα are not known. Here, we used proteomic analysis of mouse cortico-hippocampal membranes to identify the neuronal specific alpha3 (α3)-subunit of the plasma membrane enzyme Na, K-ATPase (NKA) as a new binding partner of sAPPα. We showed that sAPPα recruits very rapidly clusters of α3-NKA at neuronal surface, and its binding triggers a cascade of events promoting sAPPα-induced axonal outgrowth. The binding of sAPPα with α3-NKA was not observed for sAPPα-induced Aß1-42 oligomers neuroprotection, neither the downstream events particularly the interaction of sAPPα with APP before endocytosis, ERK signaling, and the translocation of SET from the nucleus to the plasma membrane. These data suggest that the mechanisms of the axonal growth promoting and neuroprotective properties of sAPPα appear to be specific and independent. The signals at the cell surface specific to trigger these mechanisms require further study.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Axônios/metabolismo , Neuroproteção , Fragmentos de Peptídeos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Membrana Celular/metabolismo , Proteínas de Ligação a DNA , Endocitose , Chaperonas de Histonas , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neuritos/metabolismo , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Solubilidade
14.
Neurobiol Aging ; 61: 23-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032190

RESUMO

Amyloid precursor protein (APP), a key molecule of Alzheimer disease, is metabolized in 2 antagonist pathways generating the soluble APP alpha (sAPPα) having neuroprotective properties and the beta amyloid (Aß) peptide at the origin of neurotoxic oligomers, particularly Aß1-42. Whether extracellular Aß1-42 oligomers modulate the formation and secretion of sAPPα is not known. We report here that the addition of Aß1-42 oligomers to primary cortical neurons induced a transient increase in α-secretase activity and secreted sAPPα 6-9 hours later. Preventing the generation of sAPPα by using small interfering RNAs (siRNAs) for the α-secretases ADAM10 and ADAM17 or for APP led to increased Aß1-42 oligomer-induced cell death after 24 hours. Neuronal injuries due to oxidative stress or growth factor deprivation also generated sAPPα 7 hours later. Finally, acute injection of Aß1-42 oligomers into wild-type mouse hippocampi induced transient secretion of sAPPα 48-72 hours later. Altogether, these data suggest that neurons respond to stress by generating sAPPα for their survival. These data must be taken into account when interpreting sAPPα levels as a biomarker in neurological disorders.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Morte Celular , Neurônios/patologia , Neurônios/fisiologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Hipocampo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno , Fatores de Tempo
15.
Nat Nanotechnol ; 12(4): 322-328, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27893730

RESUMO

Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.


Assuntos
Doença de Alzheimer , Transtorno Autístico , Rastreamento de Células/métodos , Hipocampo , Nanodiamantes/química , Neurônios , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Transporte Biológico Ativo/genética , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Neurônios/metabolismo , Neurônios/patologia
16.
Mol Syndromol ; 7(5): 251-261, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27867340

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) in humans with an incidence of ∼1:1,000 live births worldwide. It is caused by the presence of an extra copy of all or a segment of the long arm of human chromosome 21 (trisomy 21). People with DS present with a constellation of phenotypic alterations involving most organs and organ systems. ID is present in all people with DS, albeit with variable severity. DS is also the most frequent genetic cause of Alzheimer's disease (AD), and ∼50% of those with DS will develop AD-related dementia. In the last few years, significant progress has been made in understanding the crucial genotype-phenotype relationships in DS, in identifying the alterations in molecular pathways leading to the various clinical conditions present in DS, and in preclinical evaluations of potential therapies to improve the overall health and well-being of individuals with DS. In June 2015, 230 scientists, advocates, patients, and family members met in Paris for the 1st International Conference of the Trisomy 21 Research Society. Here, we report some of the most relevant presentations that took place during the meeting.

17.
Neurobiol Aging ; 46: 43-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460148

RESUMO

SET is a multifunctional protein, but when present in the cytoplasm, acts as a powerful inhibitor of phosphatase 2A. We previously observed that in CA1 of Down syndrome (DS) patients, the level of SET is increased, and SET is translocated to the cytoplasm and associated with the hyperphosphorylation of tau at ser202/thr205. The presence of SET in the cytoplasm in DS brains may play a role in the progression of the disease. Here, we show that in CA1 of 3-month-old Ts65Dn mice modeling DS, SET level is increased, and SET is translocated to the cytoplasm and associated with tau hyperphosphorylations at ser202/thr205 and with amyloid precursor protein caspase cleaved as observed in Alzheimer disease brains. Tau hyperphosphorylation at ser356 and activation of other phosphatase 2A targets such as the mammalian target of rapamycin and adenosine monophosphate protein kinases were also observed, suggesting deleterious mechanisms. We propose Ts65Dn mice as a model for therapeutic approaches focused on SET overexpression and its cytoplasmic translocation to slow down disease progression.


Assuntos
Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/terapia , Proteínas Oncogênicas/metabolismo , Transporte Proteico , Proteínas tau/química , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Expressão Gênica , Chaperonas de Histonas , Masculino , Camundongos , Camundongos Endogâmicos , Terapia de Alvo Molecular , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/fisiologia , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Serina , Sirolimo , Treonina
18.
Brain Behav ; 5(9): e00361, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26445700

RESUMO

INTRODUCTION: The inhibition of the Histone Deacetylase 6 (HDAC6) increases tubulin acetylation, thus stimulating intracellular vesicle trafficking and brain-derived neurotrophic factor (BDNF) release, that is, cellular processes markedly reduced in Huntington's disease (HD). METHODS: We therefore tested that reducing HDAC6 levels by genetic manipulation would attenuate early cognitive and behavioral deficits in R6/1 mice, a mouse model which develops progressive HD-related phenotypes. RESULTS: In contrast to our initial hypothesis, the genetic deletion of HDAC6 did not reduce the weight loss or the deficits in cognitive abilities and nest-building behavior shown by R6/1 mice, and even worsened their social impairments, hypolocomotion in the Y-maze, and reduced ultrasonic vocalizations. CONCLUSIONS: These results weaken the validity of HDAC6 reduction as a possible therapeutic strategy for HD. The data are discussed in terms of additional cellular consequences and anatomical specificity of HDAC6 that could explain these unexpected effects.


Assuntos
Histona Desacetilases/genética , Doença de Huntington/enzimologia , Doença de Huntington/genética , Acetilação , Animais , Comportamento Animal/fisiologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Deleção de Genes , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Doença de Huntington/terapia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
19.
J Alzheimers Dis ; 48(4): 927-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402095

RESUMO

This study shows a decrease in soluble amyloid-ß protein precursor-α (sAßPPα) levels, but no change in sAßPPß, in the rat hippocampus during healthy aging, associated with the weaker expression of N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) in the CA1 area of hippocampal slices. Exogenous application of recombinant sAßPPα increases NMDAR activation in aged animals and could rescue the age-related LTP deficits described. In contrast, it does not affect basal synaptic transmission or glutamate release. These results indicate that improving synaptic sAßPPα availability at synapses helps in reducing the functional NMDAR-related deregulation of hippocampal networks linked to aging.


Assuntos
Envelhecimento/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/administração & dosagem , Animais , Western Blotting , Estimulação Elétrica , Eletroforese em Gel de Poliacrilamida , Potenciais Pós-Sinápticos Excitadores/fisiologia , Microeletrodos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos
20.
Neurobiol Aging ; 36(12): 3200-3213, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391642

RESUMO

ß-amyloid is hypothesized to harm neural function and cognitive abilities by perturbing synaptic transmission and plasticity in Alzheimer's disease (AD). To assess the impact of this pathology on hippocampal neurons' ability to encode flexibly environmental information across learning, we performed electrophysiological recordings of CA1 hippocampal unit activity in AD transgenic mice as they acquired an action-reward association in a spatially defined environment; the behavioral task enabled the precise timing of discrete and intentional behaviors of the animal. We found that the proportion of behavioral task-sensitive cells in wild-type (WT) mice typically increased, whereas the proportion of place cells decreased with learning. In AD mice, this learning-dependent change of cell-discharge patterns was absent, and cells exhibited similar firings from the beginning to firings attained at the late learning stage in wild-type cells. These inflexible hippocampal representations of task and space throughout learning are accompanied by remarkable alterations of local oscillatory activity in the theta and ultra-fast ripple frequencies as well as learning abilities. The present data offer new insights into the in vivo cellular and network processes by which ß-amyloid and other AD mutations may exert its harmful effects to produce cognitive and behavioral impairments in early stage of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Região CA1 Hipocampal/fisiopatologia , Neurônios/fisiologia , Ritmo Teta/fisiologia , Animais , Comportamento Animal , Cognição , Fenômenos Eletrofisiológicos , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos , Recompensa , Comportamento Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA