RESUMO
Reactive Oxygen Species (ROS) and mitochondrial dysfunction are implicated in the pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disorder characterized by abnormal metabolism of the amyloid precursor protein (APP) in brain tissue. However, the exact mechanism by which abnormal APP leads to oxidative distress remains unclear. Damage to mitochondrial membrane and inhibition of mitochondrial respiration are thought to contribute to the progression of the disease. However, the lack of suitable human models that replicate pathological features, together with impaired cellular pathways, constitutes a major challenge in AD studies. In this work, we induced pluripotency in patient-derived skin fibroblasts carrying the Swedish mutation in App (APPswe), to generate human brain organoids that model AD, and studied redox regulation and mitochondrial homeostasis. We found time-dependent increases in AD-related pathological hallmarks in APPswe brain organoids, including elevated Aß levels, increased extracellular amyloid deposits, and enhanced tau phosphorylation. Interestingly, using live-imaging spinning-disk confocal microscopy, we found an increase in mitochondrial fragmentation and a significant loss of mitochondrial membrane potential in APPswe brain organoids when subjected to oxidative conditions. Moreover, ratiometric dyes in a live imaging setting revealed a selective increase in mitochondrial superoxide anion and hydrogen peroxide levels in APPswe brain organoids that were coupled to impairments in cytosolic and mitochondrial redoxin protein expression. Our results suggest a selective increase in mitochondrial vulnerability to oxidative conditions in APPswe organoids, indicating that the abnormal metabolism of APP leads to specific changes in mitochondrial homeostasis that enhance the vulnerability to oxidation in AD.
Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Encéfalo/metabolismo , Organoides/metabolismo , Organoides/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos TransgênicosRESUMO
Alzheimer's disease (AD) is the primary cause of dementia, to date. The urgent need to understand the biological and biochemical processes related to this condition, as well as the demand for reliable in vitro models for drug screening, has led to the development of novel techniques, among which stem cell methods are of utmost relevance for AD research, particularly the development of human brain organoids. Brain organoids are three-dimensional cellular aggregates derived from induced pluripotent stem cells (iPSCs) that recreate different neural cell interactions and tissue characteristics in culture. Here, we describe the protocol for the generation of brain organoids derived from AD patients and for the analysis of AD-derived pathology. AD organoids can recapitulate beta-amyloid and tau pathological features, making them a promising model for studying the molecular mechanisms underlying disease and for in vitro drug testing.
Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Organoides , Doença de Alzheimer/patologia , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismoRESUMO
DYRK1A triplication in Down's Syndrome (DS) and its overexpression in Alzheimer's Disease (AD) suggest a role for increased DYR1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of AD, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live-imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speeds transitions suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in DS and AD.Significance StatementAxonal transport defects are early events in the progression of neurodegenerative diseases such as Alzheimer's Disease (AD). However, the molecular mechanisms underlying transport defects remain elusive. DYRK1A kinase is triplicated in Down's Syndrome and overexpressed in AD, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of the amyloid precursor protein (APP). Further, single particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism; supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in AD.
RESUMO
Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1-/-) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1-/- mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1-/- cerebral cortex. In addition, Klc1-/- neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.
Assuntos
Transporte Axonal , Axônios/metabolismo , Canabinoides/metabolismo , Cinesinas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Axônios/ultraestrutura , Córtex Cerebral/metabolismo , Deleção de Genes , Cones de Crescimento/metabolismo , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Tálamo/metabolismoRESUMO
The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Assuntos
Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cinesinas/metabolismo , Locomoção/fisiologia , Receptores de Dopamina D2/metabolismo , Animais , Camundongos , Camundongos KnockoutRESUMO
Neurons rely on complex axonal transport mechanisms that mediate the intracellular dynamics of proteins, vesicles, and mitochondria along their high polarized structure. The fast improvement of live imaging techniques of fluorescent cargos allowed the identification of the diverse motion properties of different transported molecules. These properties arise as the result of molecular interactions between many players involved in axonal transport. Motor proteins, microtubule tracks, cargo association, and even axonal viscosity contribute to the proper axonal dynamics of different cargos. The unique properties in each cargo determine their distribution and location that is relevant to ensure neuronal cell activity and survival. This chapter provides a computational-based method for the generation of cargo trajectories and the identification of different motion regimes while cargo moves along axons. Then, the procedure to extract relevant parameters from active, diffusive, and confined motion is provided. These properties will allow a better comprehension of the nature and characteristics of cargo motion in living cells, therefore contributing to understanding the consequences of transport defects that arise during diseases of the nervous system.
Assuntos
Axônios/metabolismo , Biologia Computacional/métodos , Neurônios/citologia , Animais , Transporte Axonal , Humanos , Camundongos , Imagem Molecular , Neurônios/metabolismo , Ratos , SoftwareRESUMO
The etiology of Parkinson's disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities. A53T αSyn was enriched in mitochondrial fractions, inducing significant mitochondrial transport defects and fragmentation, while milder defects were elicited by WT and A30P. We found that αSyn-mediated mitochondrial fragmentation was linked to expression levels in WT and A53T variants. Targeted delivery of WT and A53T αSyn to the outer mitochondrial membrane further increased fragmentation, whereas A30P did not. Genomic editing to disrupt the N-terminal domain of αSyn, which is important for membrane association, resulted in mitochondrial elongation without changes in fusion-fission protein levels, suggesting that αSyn plays a direct physiological role in mitochondrial size maintenance. Thus, we demonstrate that the association of αSyn with the mitochondria, which is modulated by protein mutation and dosage, influences mitochondrial transport and morphology, highlighting its relevance in a common pathway impaired in PD.
Assuntos
Homeostase , Mitocôndrias/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Transporte Axonal , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Proteínas Mutantes/metabolismo , Tamanho das Organelas , Domínios Proteicos , alfa-Sinucleína/químicaRESUMO
Tau, as a microtubule (MT)-associated protein, participates in key neuronal functions such as the regulation of MT dynamics, axonal transport, and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) MT binding repeats. Although tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated with the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here, we addressed this issue using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content, neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectory analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Conversely, the imbalance toward the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoform imbalances with APP abnormal metabolism in neurodegenerative processes. SIGNIFICANCE STATEMENT: The tau protein has a relevant role in the transport of cargos throughout neurons. Dysfunction in tau metabolism underlies several neurological disorders leading to dementia. In the adult human brain, two tau isoforms are found in equal amounts, whereas changes in such equilibrium have been associated with neurodegenerative diseases. We investigated the role of tau in human neurons in culture and found that perturbations in the endogenous balance of tau isoforms were sufficient to impair the transport of the Alzheimer's disease-related amyloid precursor protein (APP), although neuronal morphology was normal. Our results provide evidence of a direct relationship between tau isoform imbalance and defects in axonal transport, which induce an abnormal APP metabolism with important implications in neurodegeneration.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiologia , Neurônios/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Neurônios/ultraestrutura , Isoformas de Proteínas , Tauopatias/metabolismoRESUMO
Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.