Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 12238, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947829

RESUMO

Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580 ± 258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.

2.
Nature ; 534(7606): 249-53, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279222

RESUMO

Recent excavations at the early Middle Pleistocene site of Mata Menge in the So'a Basin of central Flores, Indonesia, have yielded hominin fossils attributed to a population ancestral to Late Pleistocene Homo floresiensis. Here we describe the age and context of the Mata Menge hominin specimens and associated archaeological findings. The fluvial sandstone layer from which the in situ fossils were excavated in 2014 was deposited in a small valley stream around 700 thousand years ago, as indicated by (40)Ar/(39)Ar and fission track dates on stratigraphically bracketing volcanic ash and pyroclastic density current deposits, in combination with coupled uranium-series and electron spin resonance dating of fossil teeth. Palaeoenvironmental data indicate a relatively dry climate in the So'a Basin during the early Middle Pleistocene, while various lines of evidence suggest the hominins inhabited a savannah-like open grassland habitat with a wetland component. The hominin fossils occur alongside the remains of an insular fauna and a simple stone technology that is markedly similar to that associated with Late Pleistocene H. floresiensis.


Assuntos
Arqueologia , Meio Ambiente , Fósseis , Hominidae , Datação Radiométrica , Animais , Argônio , Clima , Espectroscopia de Ressonância de Spin Eletrônica , Pradaria , História Antiga , Indonésia , Radioisótopos , Comportamento de Utilização de Ferramentas , Dente/química , Erupções Vulcânicas/história , Áreas Alagadas
3.
Nature ; 532(7599): 366-9, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27027286

RESUMO

Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia), has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts and remains of other extinct endemic fauna, were dated to between about 95 and 12 thousand calendar years (kyr) ago. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. BP), or the time of last appearance of this species (about 17 or 13-11 kyr cal. BP). Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago--potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans--is an open question.


Assuntos
Arqueologia , Fósseis , Hominidae , Datação Radiométrica , Silicatos de Alumínio , Animais , Austrália , Calibragem , Cavernas , Sedimentos Geológicos/análise , Vidro , Humanos , Indonésia , Compostos de Potássio , Quartzo , Fatores de Tempo , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA