Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Eye Res ; 49(3): 314-324, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38146597

RESUMO

PURPOSE: To compare peak cone density predicted from outer segment length measured on optical coherence tomography with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. METHODS: Data from 42 healthy participants with direct peak cone density measures and optical coherence tomography line scans available were used in this study. Longitudinal reflectivity profiles were analyzed using two methods of identifying the boundaries of the ellipsoid and interdigitation zones to estimate maximum outer segment length: peak-to-peak and the slope method. These maximum outer segment length values were then used to predict peak cone density using a previously described geometrical model. A comparison between predicted and direct peak cone density measures was then performed. RESULTS: The mean bias between observers for estimating maximum outer segment length across methods was less than 2 µm. Cone density predicted from the peak-to-peak method against direct cone density measures showed a mean bias of 6,812 cones/mm2 with 50% of participants displaying a 10% difference or less between predicted and direct cone density values. Cone density derived from the slope method showed a mean bias of -17,929 cones/mm2 relative to direct cone density measures, with only 41% of participants demonstrating less than a 10% difference between direct and predicted cone density values. CONCLUSION: Predicted foveal cone density derived from peak-to-peak outer segment length measurements using commercial optical coherence tomography show modest agreement with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. The methods used here are imperfect predictors of cone density, however, further exploration of this relationship could reveal a clinically relevant marker of cone structure.


Assuntos
Células Fotorreceptoras Retinianas Cones , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Oftalmoscopia/métodos , Fóvea Central , Óptica e Fotônica
2.
Invest Ophthalmol Vis Sci ; 61(14): 23, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331861

RESUMO

Purpose: To test the hypothesis that foveal cone topography is symmetrical between contralateral eyes. Methods: We used adaptive optics scanning light ophthalmoscopy to acquire images of the foveal cone mosaic in each eye of 58 subjects with normal vision (35 female, 23 male). Cones were semiautomatically identified over a 300 × 300-µm foveal area. From these cone coordinates, maps of cone density were derived, and we extracted estimates of peak cone density from each map. Mosaic regularity was assessed using Voronoi cell area regularity (VCAR). Average roundness and average area of the 70%, 75%, 80%, 85%, and 90% of peak density isodensity contours were evaluated. Results: The average peak cone density for right eyes was 180,286 cones/mm2 (n = 49) and for left eyes was 182,397 cones/mm2 (n = 45), with a mean absolute difference of 6363 cones/mm2 (n = 43). Peak density, cone spacing, VCAR, and average area within the isodensity contours of fellow eyes were not significantly different (P = 0.60, P = 0.83, P = 0.30, and P = 0.39, respectively). However, the average roundness of the isodensity contours was 2% more circular in the right eyes than in the left eyes (P = 0.02). Conclusions: There is interocular symmetry of peak foveal cone density, mosaic regularity, and area encompassing the most densely packed cells in subjects with normal vision. The origin and significance of the observed interocular difference in average roundness of the isodensity contours are unclear.


Assuntos
Fóvea Central/anatomia & histologia , Células Fotorreceptoras Retinianas Cones/citologia , Adolescente , Adulto , Idoso , Contagem de Células , Criança , Feminino , Fóvea Central/citologia , Fóvea Central/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Oftalmoscopia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA