Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(5): 2301-2316, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37072291

RESUMO

This work presents a study on the influence of biologically relevant ions on the corrosion of zinc (Zn) in physiological fluids. Electrochemical techniques were used to investigate the degradation of pure Zn exposed to different physiological electrolytes containing chlorides, carbonates, sulfates, and phosphates. The corrosion behavior of Zn in the solutions over a 7-day period was also assessed. SEM, EDS, and FTIR were used to analyze corrosion products. With respect to corrosion, the most aggressive ions are chlorides, which induce localized corrosion, while carbonates and phosphates reduce the corrosive attack of the chloride on Zn while inducing uniform corrosion. Sulfates reduce the corrosion rate by disrupting Zn's passive layer. The overall corrosion rate of Zn changed in each electrolyte depending on the nature of the solution and the corrosion product formed. These findings will be useful in predicting the in-service behavior of future biodegradable Zn medical implants.


Assuntos
Zinco , Cátions Bivalentes/química , Zinco/química , Corrosão , Eletrólitos , Propriedades de Superfície , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Mech Behav Biomed Mater ; 138: 105658, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610283

RESUMO

This work reports the first in vitro study on the in-situ biodegradation behaviour and the evolution of fixation strength of Zn-Cu alloy wires in a simulated sternum closure environment. Zn-Cu wires were used to reapproximate the partial bisected sternum models, and their fixation effect was compared with traditional surgical grade 316 L stainless steel (SS) wires in terms of fixation rigidity, critical load, first/ultimate failure characteristics. The metal sutures were then immersed in Hank's balanced salt solution for 12 weeks immersion period, and their corrosion behaviours assessed. Zn-Cu wires showed similar fixation rigidity at 70.89 ± 6.97 N/mm as SS, but the critical load, first failure and ultimate failure characteristics were inferior to SS. The key challenges that limited the fixation effect of the Zn-Cu wires were poor mechanical strength, short elastic region, and strain softening behaviours, which resulted in poor load-bearing capabilities and reduced the knot security of the sutures. The in-situ biodegradation of the Zn-Cu suture was accompanied by the early onset of localised corrosion within the twisted knot and the section located next to the incision line. Crevice corrosion and strain-induced corrosion were the dominant mechanisms in the observed localised corrosion. The localised corrosion on the Zn-Cu sutures did not lead to a significant shift in fixation rigidity, critical load and the first failure characteristics. The findings suggest that the Zn-based biodegradable metallic wires could be a promising sternum closure suture material once the limitations in mechanical characteristics are addressed.


Assuntos
Esterno , Técnicas de Sutura , Esterno/cirurgia , Fios Ortopédicos , Suturas , Aço Inoxidável , Ligas/farmacologia , Corrosão , Zinco , Teste de Materiais
3.
Biomaterials ; 280: 121301, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922270

RESUMO

The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.


Assuntos
Ligas , Zinco , Implantes Absorvíveis , Ligas/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Magnésio , Teste de Materiais , Nutrientes
4.
Bioact Mater ; 6(5): 1436-1451, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33210035

RESUMO

Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu's therapeutic values to wound healing. The influence of Ca and Cu on the microstructure, mechanical and degradation properties of Zn were investigated in the as-cast state to establish the fundamental understanding on the Zn-Ca-Cu alloy system. The microstructure of Zn-0.5Ca-0.5Cu, Zn-1.0Ca-0.5Cu, and Zn0.5Ca-1.0Cu is composed of intermetallic phase CaZn13 distributed within the Zn-Cu solid solution. The presence of CaZn13 phase and Cu as solute within the Zn matrix, on the one hand, exhibited a synergistic effect on the grain refinement of Zn, reducing the grain size of pure Zn by 96%; on the other hand, improved the mechanical properties of the ternary alloys through solid solution strengthening, second phase strengthening, and grain refinement. The degradation properties of Zn-Ca-Cu alloys are primarily influenced by the micro-galvanic corrosion between Zn-Cu matrix and CaZn13 phase, where the 0.5% and 1.0% Ca addition increased the corrosion rate of Zn from 11.5 µm/y to 19.8 µm/y and 29.6 µm/y during 4 weeks immersion test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA