Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pharmaceutics ; 14(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35890219

RESUMO

The exposure of lung epithelium to environmental hazards is linked to several chronic respiratory diseases. We assessed the ability of an inhaled dry powder (DPI) medical device product (PolmonYDEFENCE/DYFESATM, SOFAR SpA, Trezzano Rosa, Italy), using a formulation of sodium hyaluronate (Na-Hya) as the key ingredient as a defensive barrier to protect the upper respiratory tract. Specifically, it was evaluated if the presence of the barrier formed by sodium hyaluronate present on the cells, reducing direct contact of the urban dust (UD) with the surface of cells can protect them in an indirect manner by the inflammatory and oxidative process started in the presence of the UD. Cytotoxicity and the protection capability against the oxidative stress of the product were tested in vitro using Calu-3 cells exposure to UD as a trigger for oxidative stress. Inflammation and wound healing were assessed using an air-liquid interface (ALI) culture model of the Calu-3 cells. Deposition studies of the formulation were conducted using a modified Anderson cascade impactor (ACI) and the monodose PillHaler® dry powder inhaler (DPI) device, Na-Hya was detected and quantified using high-performance-liquid-chromatography (HPLC). Solubilised PolmonYDEFENCE/DYFESATM gives protection against oxidative stress in Calu-3 cells in the short term (2 h) without any cytotoxic effects. ALI culture experiments, testing the barrier-forming (non-solubilised) capabilities of PolmonYDEFENCE/DYFESATM, showed that the barrier layer reduced inflammation triggered by UD and the time for wound closure compared to Na-Hya alone. Deposition experiments using the ACI and the PillHaler® DPI device showed that the majority of the product was deposited in the upper part of the respiratory tract. Finally, the protective effect of the product was efficacious for up to 24 h without affecting mucus production. We demonstrated the potential of PolmonYDEFENCE/DYFESATM as a preventative barrier against UD, which may aid in protecting the upper respiratory tract against environmental hazards and help with chronic respiratory diseases.

2.
Oncotarget ; 13: 587-599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401936

RESUMO

Endometrial cancer is the most diagnosed gynecological malignancy. Despite numerous scientific advances, the incidence and mortality rate of endometrial cancer continues to rise. Emerging evidence suggests a putative role of the (pro)renin receptor ((P)RR), in the ontogenesis of endometrial cancer. The (P)RR is implicated in breast cancer and pancreatic carcinoma pathophysiology by virtue of its role in proliferation, angiogenesis, fibrosis, migration and invasion. Thus, we aimed to investigate the functional role of the (P)RR in human endometrial cancer. We employed an siRNA-mediated knockdown approach to abrogate (P)RR expression in the endometrial epithelial cell lines; Ishikawa, AN3CA and HEC-1-A and examined cellular proliferation and viability. We also carried out a sophisticated proteomic screen to explore potential pathways via which the (P)RR is acting in endometrial cancer physiology. These data confirmed that the (P)RR is critical for endometrial cancer development, contributing to both its proliferative capacity and in the maintenance of cell viability. This is likely mediated through proteins such as MGA, SLC4A7, SLC7A11 or DHRS2, which were reduced following (P)RR knockdown. These putative protein interactions/pathways, which rely on the presence of the (P)RR, are likely to contribute to endometrial cancer progression and could therefore, represent several novel therapeutic targets for endometrial cancer.


Assuntos
Neoplasias do Endométrio , Renina , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias do Endométrio/patologia , Feminino , Humanos , Proteômica , RNA Interferente Pequeno/genética , Receptores de Superfície Celular , Renina/genética , Receptor de Pró-Renina
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269550

RESUMO

Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.


Assuntos
COVID-19/terapia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi/métodos , Animais , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Modelos Genéticos , Nanopartículas/química , Pandemias/prevenção & controle , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , SARS-CoV-2/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-34886743

RESUMO

Triple combination FCR (fludarabine, cyclophosphamide and rituximab) is often used as front-line treatment for chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma. Results from our laboratory indicate that 2-FaraAMP (fludarabine) has multiple mechanisms of cytotoxicity that include accumulation of isoforms and phosphorylated derivatives of p53, and induction of the unfolded protein response (UPR). Using protein pull-downs with Dynabeads coated with p53 antibody, we have found that 2-FaraA (fludarabine nucleoside) induces major changes in the p53 interactome in human Raji lymphoma and IM9 multiple myeloma cells. These changes are likely driven by DNA strand breaks induced by 2-FaraA that activate protein kinases such as ATM, ATR and Chk1.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular , Ciclofosfamida , Humanos , Neoplasias/tratamento farmacológico , Nucleosídeos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vidarabina/análogos & derivados , Vidarabina/farmacologia
5.
Lab Invest ; 101(7): 851-864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33859334

RESUMO

Endothelial and epithelial cells form physical barriers that modulate the exchange of fluid and molecules. The integrity of these barriers can be influenced by signaling through G protein-coupled receptors (GPCRs) and ion channels. Serotonin (5-HT) is an important vasoactive mediator of tissue edema and inflammation. However, the mechanisms that drive 5-HT-induced plasma extravasation are poorly defined. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an established enhancer of signaling by GPCRs that promote inflammation and endothelial barrier disruption. Here, we investigated the role of TRPV4 in 5-HT-induced plasma extravasation using pharmacological and genetic approaches. Activation of either TRPV4 or 5-HT receptors promoted significant plasma extravasation in the airway and upper gastrointestinal tract of mice. 5-HT-mediated extravasation was significantly reduced by pharmacological inhibition of the 5-HT2A receptor subtype, or with antagonism or deletion of TRPV4, consistent with functional interaction between 5-HT receptors and TRPV4. Inhibition of receptors for the neuropeptides substance P (SP) or calcitonin gene-related peptide (CGRP) diminished 5-HT-induced plasma extravasation. Supporting studies assessing treatment of HUVEC with 5-HT, CGRP, or SP was associated with ERK phosphorylation. Exposure to the TRPV4 activator GSK1016790A, but not 5-HT, increased intracellular Ca2+ in these cells. However, 5-HT pre-treatment enhanced GSK1016790A-mediated Ca2+ signaling, consistent with sensitization of TRPV4. The functional interaction was further characterized in HEK293 cells expressing 5-HT2A to reveal that TRPV4 enhances the duration of 5-HT-evoked Ca2+ signaling through a PLA2 and PKC-dependent mechanism. In summary, this study demonstrates that TRPV4 contributes to 5-HT2A-induced plasma extravasation in the airways and upper GI tract, with evidence supporting a mechanism of action involving SP and CGRP release.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Serotonina , Canais de Cátion TRPV , Trato Gastrointestinal Superior/efeitos dos fármacos , Animais , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/genética , Serotonina/metabolismo , Serotonina/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Trato Gastrointestinal Superior/citologia , Trato Gastrointestinal Superior/metabolismo
7.
Mol Cell Proteomics ; 18(Suppl 1): S91-S108, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30213844

RESUMO

The functional maturation of spermatozoa that is necessary to achieve fertilization occurs as these cells transit through the epididymis, a highly specialized region of the male reproductive tract. A defining feature of this maturation process is that it occurs in the complete absence of nuclear gene transcription or de novo, protein translation in the spermatozoa. Rather, it is driven by sequential interactions between spermatozoa and the complex external milieu in which they are bathed within lumen of the epididymal tubule. A feature of this dynamic microenvironment are epididymosomes, small membrane encapsulated vesicles that are secreted from the epididymal soma. Herein, we report comparative proteomic profiling of epididymosomes isolated from different segments of the mouse epididymis using multiplexed tandem mass tag (TMT) based quantification coupled with high resolution LC-MS/MS. A total of 1640 epididymosome proteins were identified and quantified via this proteomic method. Notably, this analysis revealed pronounced segment-to-segment variation in the encapsulated epididymosome proteome. Thus, 146 proteins were identified as being differentially accumulated between caput and corpus epididymosomes, and a further 344 were differentially accumulated between corpus and cauda epididymosomes (i.e., fold change of ≤ -1.5 or ≥ 1.5; p, < 0.05). Application of gene ontology annotation revealed a substantial portion of the epididymosome proteins mapped to the cellular component of extracellular exosome and to the biological processes of transport, oxidation-reduction, and metabolism. Additional annotation of the subset of epididymosome proteins that have not previously been identified in exosomes revealed enrichment of categories associated with the acquisition of sperm function (e.g., fertilization and binding to the zona pellucida). In tandem with our demonstration that epididymosomes are able to convey protein cargo to the head of maturing spermatozoa, these data emphasize the fundamental importance of epididymosomes as key elements of the epididymal microenvironment responsible for coordinating post-testicular sperm maturation.


Assuntos
Epididimo/metabolismo , Vesículas Extracelulares/metabolismo , Proteômica , Maturação do Esperma/fisiologia , Testículo/metabolismo , Animais , Antígenos de Superfície/metabolismo , Biotinilação , Vesículas Extracelulares/ultraestrutura , Ontologia Genética , Masculino , Camundongos , Proteínas do Leite/metabolismo , Anotação de Sequência Molecular , Proteoma/metabolismo , Reprodutibilidade dos Testes , Espermatozoides/metabolismo
8.
Proteomics Clin Appl ; 12(3): e1700121, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476593

RESUMO

BACKGROUND: Optimized blood collection tubes (BCT) have been developed to expand the utility of plasma cell-free DNA (cfDNA) and are in clinical use. The appropriateness of plasma collected and stored in these tubes for proteomic analysis is unknown. METHODS: Paired blood samples were collected in BCT and traditional K3EDTA (EDTA) tubes from healthy controls and from colorectal cancer (CRC) patients before and after surgery, and stored for between 45 min and 48 h at room temperature. Plasma proteins were analyzed following high-abundant plasma protein depletion in quantitative discovery and targeted proteomics by liquid chromatography tandem-mass spectrometry (LC-MS/MS). RESULTS: BCT reduced cellular protein contamination in healthy controls over time, and increased the number of high confident low-abundant protein identifications in CRC blood samples compared to matched samples collected in EDTA tubes. The known CRC plasma protein biomarker, carcinoembryonic antigen (CEA), showed elevated levels across patients pre-operatively when collected and stored in BCT compared to EDTA tubes. Emerging CRC biomarkers, Dickkopf-3 (DKK3) and Gelsolin (GSN), showed elevated levels pre-operatively when collected in BCT. CONCLUSIONS: Optimized BCT are appropriate for low-abundant plasma protein analysis and can be used with confidence for clinical proteomics.


Assuntos
Coleta de Amostras Sanguíneas/instrumentação , Ácidos Nucleicos Livres/sangue , Neoplasias Colorretais/sangue , Proteômica , Ácidos Nucleicos Livres/química , Neoplasias Colorretais/genética , Ácido Edético/química , Humanos
9.
Cell Mol Life Sci ; 73(3): 649-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26289129

RESUMO

Mechanosensitive ion channels are implicated in the biology of touch, pain, hearing and vascular reactivity; however, the identity of these ion channels and the molecular basis of their activation is poorly understood. We previously found that transient receptor potential vanilloid 4 (TRPV4) is a receptor operated ion channel that is sensitised and activated by mechanical stress. Here, we investigated the effects of mechanical stimulation on TRPV4 localisation and activation in native and recombinant TRPV4-expressing cells. We used a combination of total internal reflection fluorescence microscopy, cell surface biotinylation assay and Ca(2+) imaging with laser scanning confocal microscope to show that TRPV4 is expressed in primary vascular endothelial cells and that shear stress sensitises the response of TRPV4 to its agonist, GSK1016790A. The sensitisation was attributed to the recruitment of intracellular pools of TRPV4 to the plasma membrane, through the clathrin and dynamin-mediated exocytosis. The translocation was dependent on ILK/Akt signalling pathway, release of Ca(2+) from intracellular stores and we demonstrated that shear stress stimulated phosphorylation of TRPV4 at tyrosine Y110. Our findings implicate calcium-sensitive TRPV4 translocation in the regulation of endothelial responses to mechanical stimulation.


Assuntos
Exocitose/fisiologia , Mecanotransdução Celular , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Transporte Proteico , Estresse Fisiológico , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-24940695

RESUMO

Fludarabine (2-FaraAMP) is a purine analog that is effective against chronic lymphocytic leukemia (CLL) and non-Hodgkins lymphoma (NHL). For some cases of CLL, 2-FaraAMP as a single agent can clear the blood of leukemia cells, but leukemia stem cells usually remain protected in sanctuary sites. It is clear that 2-FaraAMP has multiple mechanisms of action that may collectively result in strand breaks in DNA, accumulation of phosphorylated p53 and apoptosis. We have demonstrated using the human Burkitt's lymphoma B-cell line, Raji, that p53, p63 and p73 all accumulate in the nucleus, following treatment of cells with fludarabine nucleoside (2-FaraA). In addition, phosphorylated p53 accumulates in the cytosol and at mitochondria. Using sophisticated methods of proteomic analysis with mass spectrometry, proteins that become differentially abundant after treatment of cells with 2-FaraA have been identified, providing considerable additional information about the cellular responses of B-lymphoid cancers to this purine analog. The levels of proteins involved in the unfolded protein response increase, indicating that endoplasmic reticulum stress is likely to be one mechanism for induction of apoptosis. The levels of a number of proteins found on the outer plasma membrane change on cells treated with 2-FaraA, suggesting that signaling from the B-cell antigen receptor (BCR) is stimulated, resulting in induction of apoptosis through the intrinsic pathway. Increased levels of the cell surface proteins, CD50, CD100 and ECE-1, would promote survival of these cells; the balance between these survival and death responses would determine the fate of the cell.


Assuntos
Antineoplásicos/farmacologia , Linfoma/patologia , Vidarabina/análogos & derivados , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Proteínas Supressoras de Tumor/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Vidarabina/farmacologia
11.
Leuk Lymphoma ; 55(9): 2085-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24289109

RESUMO

Chronic lymphocytic leukemia (CLL) is clinically heterogeneous. While some patients have indolent disease for many years, 20-30% will progress and ultimately die of their disease. CLL may be classified by the Rai or Binet staging system, mutational status of the immunoglobulin variable heavy-chain gene (IGVH), ZAP-70 overexpression, cytogenetic abnormalities (13q-, + 12, 11q-, 17p-) and expression of several cell surface antigens (CD38, CD49d) that correlate with risk of disease progression. However, none of these markers identify all cases of CLL at risk. In a recent review, we summarized those CD antigens known to correlate with the prognosis of CLL. The present study has identified surface profiles of CD antigens that distinguish clinically progressive CLL from slow-progressive and stable CLL. Using an extended DotScan(™) CLL antibody microarray (Version 3; 182 CD antibodies), and with refined analysis of purified CD19 + B-cells, the following 27 CD antigens were differentially abundant for progressive CLL: CD11a, CD11b, CD11c, CD18, CD19, CD20 (two epitopes), CD21, CD22, CD23, CD24, CD25, CD38, CD40, CD43, CD45, CD45RA, CD52, CD69, CD81, CD84, CD98, CD102, CD148, CD180, CD196 and CD270. The extensive surface profiles obtained provide disease signatures with an accuracy of 79.2%, a sensitivity of 83.9% and a specificity of 72.5% that could provide the basis for a rapid test to triage patients with CLL according to probability of clinical progression and potential earlier requirement for treatment.


Assuntos
Antígenos de Superfície/metabolismo , Imunofenotipagem , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Fenótipo , Antígenos de Superfície/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Análise por Conglomerados , Progressão da Doença , Humanos , Imunofenotipagem/métodos , Leucemia Linfocítica Crônica de Células B/genética , Prognóstico , Reprodutibilidade dos Testes
12.
J Proteome Res ; 11(9): 4436-48, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22839105

RESUMO

Fludarabine and cladribine are purine analogues used to treat hematological malignancies. Alone or in combination with therapeutic antibodies, they are effective in treating patients with chronic lymphocytic leukemia and non-Hodgkin's lymphoma. However, the mechanisms of action of these drugs are not well understood. Plasma membrane proteins perform a variety of essential functions that can be affected by malignancy and perturbed by chemotherapy. Analysis of surface proteins may contribute to an understanding of the mechanisms of action of purine analogues and identify biomarkers for targeted therapy. The surface of human cells is rich in N-linked glycoproteins, enabling use of a hydrazide-coupling technique to enrich for glycoproteins, with iTRAQ labeling for quantitative comparison. A number of plasma membrane proteins on human leukemia and lymphoma cells were affected by treatment with a purine analogue, including decreases in CD22 (an adhesion and signaling molecule) and increases in CD205 (a "damaged cell marker") and CD80 and CD50 (T-cell interaction molecules). Purine analogues may affect B-cell receptor (BCR) signaling and costimulatory molecules, leading to multiple signals for apoptosis and cell clearance. Fludarabine and cladribine induce differential effects, with some cell survival proteins (ECE-1 and CD100) more abundant after fludarabine treatment. Cell surface proteins induced by fludarabine and cladribine may be targets for therapeutic antibodies.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Cladribina/farmacologia , Proteínas de Membrana/metabolismo , Vidarabina/análogos & derivados , Antígenos CD/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Glicoproteínas/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Vidarabina/farmacologia
13.
Proteomics Clin Appl ; 6(5-6): 279-90, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22641291

RESUMO

PURPOSE: Human Raji cells treated with fludarabine nucleoside (2-FaraA, 3 µM) undergo apoptosis with accumulation of p53 in the nuclei as multiple phosphorylated isoforms and C-terminal truncated derivatives. Changes induced by 2-FaraA in the levels of p53, p63 and p73 in the nuclear, cytosolic and mitochondrial fractions have been determined in four human B-lymphoid cell lines that are TP53-functional (Raji and IM9) and TP53-mutated (MEC1 and U266). EXPERIMENTAL DESIGN: The B-lymphoid cell lines were treated with 2-FaraA (3 µM, 24 h, 48 h) and viability determined. Protein extracts of subcellular fractions from 2-FaraA-treated cells were analysed by 1D and 2D electrophoresis; multiple phosphorylated isoforms and truncated derivatives were identified by Western blots for p53, p63 and p73. RESULTS: p53 and p63 were present in all three fractions, while p73 was only detected in nuclei. After treatment with 2-FaraA, nuclear p53, p63 and p73 accumulated as multiple phosphorylated isoforms and truncated derivatives. The association of p63 with mitochondria in human cells is novel. CONCLUSIONS AND CLINICAL RELEVANCE: Comprehensive information on the subcellular distributions and responses of p53, p63 and p73 to 2-FaraA provides additional insight into mechanisms for induction of apoptosis in the treatment of B-lymphoproliferative disorders with fludarabine.


Assuntos
Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Vidarabina/análogos & derivados , Apoptose , Linhagem Celular Tumoral , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína Tumoral p73 , Vidarabina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA