Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 12: 1352009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435669

RESUMO

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

2.
Mol Syndromol ; 14(1): 11-20, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36777705

RESUMO

Introduction: Intellectual disability (ID) is a lifelong disability that affects an individual‧s learning capacity and adaptive behavior. Such individuals depend on their families for day-to-day survival and pose a significant challenge to the healthcare system, especially in developing countries. ID is a heterogeneous condition, and genetic studies are essential to unravel the underlying cellular pathway for brain development and functioning. Methods: Here we studied a female index patient, born to a consanguineous Pakistani couple, showing clinical symptoms of ID, ataxia, hypotonia, developmental delay, seizures, speech abnormality, and aggressive behavior. Whole exome sequencing (WES) coupled with Sanger sequencing was performed for molecular diagnosis. Further, 3D protein modeling was performed to see the effect of variant on protein structure. Results: WES identified a novel homozygous missense variant (c.178T>C; p.Tyr60His) in the ANK3 gene. In silico analysis and 3-dimensional (3D) protein modeling supports the deleterious impact of this variant on the encoding protein, which compromises the protein‧s overall structure and function. Conclusion: Our finding supports the clinical and genetic diversity of the ANK3 gene as a plausible candidate gene for ID syndrome. Intelligence is a complex polygenic human trait, and understanding molecular and biological pathways involved in learning and memory can solve the complex puzzle of how cognition develops. Intellectual disability (ID) is defined as a deficit in an individual‧s learning and adaptive behavior at an early age of onset [American Psychiatric Association, 2013]. It is one of the major medical, and cognitive disorders with a prevalence of 1-3% in the population worldwide [Leonard and Wen, 2002]. ID often exists with other disabling mental conditions such as autism, attention deficit hyperactivity disorder, epilepsy, schizophrenia, bipolar disorder, or depression. Almost half of the cases appear to have a genetic explanation that ranges from cytogenetically visible abnormalities to monogenic defects [Flint, 2001; Ropers, 2010; Tucker-Drob et al., 2013]. Intellectual disability is a genetically heterogeneous condition, and more than 700 genes have been identified to cause ID alone or as a part of the syndrome. Research in X-linked ID has identified more than 100 disease-causing genes on the X chromosome that play a role in cognition; however, research into autosomal causes of ID is still ongoing [Vissers et al., 2016].

3.
Biomed Res Int ; 2022: 7011789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38533238

RESUMO

Carissa opaca Stapf ex Haines (C. opaca) fruit is used traditionally in the treatment of respiratory illnesses including asthma. However, there is no scientific evidence supporting its antiasthmatic activity. The current study was conducted to evaluate its antiasthmatic effects using in vivo and in vitro approaches. The methanolic crude extract of C. opaca fruit (Co.Cr.) was used and in vivo antiasthmatic activity was carried out using ovalbumin- (OVA-) sensitized and OVA-challenged BALB/c mice. In in vitro bronchorelaxant activity of crude extract, aqueous and n-hexane fractions of C. opaca were carried out on isolated rat tracheal strips. Co.Cr. (200 and 400 mg/kg) attenuated ovalbumin-induced changes in lung histochemistry with % decrease in peribronchial inflammation of 14.1 ± 0.21 and 65.8 ± 0.22 and % decrease in total inflammatory cell count of 35.7 ± 2.80 and 53.3 ± 2.30 in bronchoalveolar lavage fluid. Co.Cr., aqueous, and n-hexane fraction of C. opaca attenuated the precontractions induced by high K+ (80 mM) and carbachol (1 µM), respectively. In conclusion, the results showed that C. opaca possesses antiasthmatic activity via relaxant effect on bronchial smooth muscle which is mediated through calcium channel blockade and antimuscarinic activity. This study provides scientific evidence of the traditional use of C. opaca in the management of allergic asthma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA