Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Endocr Metab Disord ; 25(2): 309-324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38040983

RESUMO

Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.


Assuntos
Doenças não Transmissíveis , Efeitos Tardios da Exposição Pré-Natal , Feminino , Adulto , Humanos , Doenças não Transmissíveis/epidemiologia , Doenças não Transmissíveis/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Obesidade/genética , Suscetibilidade a Doenças , Útero , Epigênese Genética
2.
Arch Med Res ; 53(5): 492-500, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35840468

RESUMO

BACKGROUND: The intestinal microbiota is involved in many physiological processes. However, the effects of microbiota in metabolic programming still unknow. We evaluated whether the transplantation of fecal microbiota during early life can program health or disease during adulthood in a model of lean and obese male and female Wistar rats. METHODS: Parental obesity were induced using a small litter (SL, 3 pups/dam) model. At 90 d old, normal litter (NL, 9 pups/dam) and SL males and females (parents) from different litters were mated: NL male vs. NL female; SL male vs. SL female. After birth, male and female offspring rats were also standardized in normal litters or small litters . From the 10th until 25th d of life, the NL and SL male and female offspring received via gavage of a solution containing the diluted feces of the opposite dam (fecal microbiota, M) or saline solution (S). At 90 d of age, biometric and biochemical parameters were assessed. RESULTS: NLM male rats transplanted with obese microbiota showed increased body weight, and fat pad deposition, hyperinsulinemia, glucose intolerance and dyslipidemia. SLM male rats transplanted with lean microbiota had decreased retroperitoneal and mesenteric fat, triglycerides and VLDL levels and improvement of glucose tolerance. Despite SLM female rats showed higher visceral fat, microbiota transplantation in female rats caused no changes in these parameters compared with control groups. CONCLUSION: Fecal microbiota transplantation during lactation induces long-term effects on the metabolism of male Wistar rats. However, female rats were resistant to metabolic alterations caused by the treatment.


Assuntos
Transplante de Microbiota Fecal , Lactação , Tecido Adiposo/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Feminino , Masculino , Obesidade/metabolismo , Obesidade/terapia , Ratos , Ratos Wistar
3.
Front Physiol ; 13: 840179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574445

RESUMO

Perturbations to nutrition during critical periods are associated with changes in embryonic, fetal or postnatal developmental patterns that may render the offspring more likely to develop cardiovascular disease in later life. The aim of this study was to evaluate whether autonomic nervous system imbalance underpins in the long-term hypertension induced by dietary protein restriction during peri-pubertal period. Male Wistar rats were assigned to groups fed with a low protein (4% protein, LP) or control diet (20.5% protein; NP) during peri-puberty, from post-natal day (PN) 30 until PN60, and then all were returned to a normal protein diet until evaluation of cardiovascular and autonomic function at PN120. LP rats showed long-term increased mean arterial pressure (p = 0.002) and sympathetic arousal; increased power of the low frequency (LF) band of the arterial pressure spectral (p = 0.080) compared with NP animals. The depressor response to the ganglion blocker hexamethonium was increased in LP compared with control animals (p = 0.006). Pulse interval variability showed an increase in the LF band and LF/HF ratio (p = 0.062 and p = 0.048) in LP animals. The cardiac response to atenolol and/or methylatropine and the baroreflex sensitivity were similar between groups. LP animals showed ventricular hypertrophy (p = 0.044) and increased interstitial fibrosis (p = 0.028) compared with controls. Reduced protein carbonyls (PC) (p = 0.030) and catalase activity (p = 0.001) were observed in hearts from LP animals compared with control. In the brainstem, the levels of PC (p = 0.002) and the activity of superoxide dismutase and catalase (p = 0.044 and p = 0.012) were reduced in LP animals, while the levels of GSH and total glutathione were higher (p = 0.039 and p = 0.038) compared with NP animals. Protein restriction during peri-pubertal period leads to hypertension later in life accompanied by sustained sympathetic arousal, which may be associated with a disorganization of brain and cardiac redox state and structural cardiac alteration.

4.
Int J Obes (Lond) ; 46(1): 137-143, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34552207

RESUMO

BACKGROUND: Early postnatal overfeeding (PO) induces long-term overweight and reduces brown adipose tissue (BAT) thermogenesis. Exercise has been suggested as a possible intervention to increase BAT function. In this study, we investigated chronical effects of moderate-intensity exercise in BAT function in postnatal overfed male Wistar rats METHODS: Litters' delivery was on postnatal-day 0 - PN0. At PN2, litters were adjusted to nine (normal litter - NL) or three pups (small litter - SL) per dam. Animals were weaned on PN21 and in PN30 randomly divided into sedentary (NL-Sed and SL-Sed) or exercised (NL-Exe and SL-Exe), N of 14 litters per group. Exercise protocol started (PN30) with an effort test; training sessions were performed three times weekly at 60% of the VO2max achieved in effort test, until PN80. On PN81, a temperature transponder was implanted beneath the interscapular BAT, whose temperature was assessed in periods of lights-on and -off from PN87 to PN90. Sympathetic nerve activation of BAT was registered at PN90. Animals were euthanized at PN91 and tissues collected RESULTS: PO impaired BAT thermogenesis in lights-on (pPO < 0.0001) and -off (pPO < 0.01). Exercise increased BAT temperature in lights-on (pExe < 0.0001). In NL-Exe, increased BAT activity was associated with higher sympathetic activity (pExe < 0.05), ß3-AR (pExe < 0.001), and UCP1 (pExe < 0.001) content. In SL-Exe, increasing BAT thermogenesis is driven by a combination of tissue morphology remodeling (pExe < 0.0001) with greater effect in increasing UCP1 (pExe < 0.001) and increased ß3-AR (pExe < 0.001) content. CONCLUSION: Moderate exercise chronically increased BAT thermogenesis in both, NL and SL groups. In NL-Exe by increasing Sympathetic activity, and in SL-Exe by a combination of increased ß3-AR and UCP1 content with morphologic remodeling of BAT. Chronically increasing BAT thermogenesis in obese subjects may lead to higher overall energy expenditure, favoring the reduction of obesity and related comorbidities.


Assuntos
Tecido Adiposo Marrom/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Brasil , Modelos Animais de Doenças , Camundongos , Obesidade/diagnóstico , Condicionamento Físico Animal/métodos , Ratos Wistar/crescimento & desenvolvimento , Ratos Wistar/metabolismo
5.
J Dev Orig Health Dis ; 13(3): 406-410, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34284843

RESUMO

Exercise counteracts obesity effects, but information on how early-life obesity may affect long-term adaptation to exercise is lacking. This study investigates the impact of early-life postnatal overfeeding (PO) on animals' adaptation to exercise. Only male Wistar rats were used. On postnatal day (PN) 30, rats from control (NL-9 pups) or PO (SL-3 pups) litters were separated into four groups: NL-sedentary (NL-Se), NL-exercised (NL-Ex), SL-sedentary (SL-Se), and SL-exercised (SL-Ex). Exercised groups performed moderate-intensity exercise, running on a treadmill, from PN30 to PN90. Further experiments were carried out between PN90 and PN92. PO promoted obesity in SL versus NL rats (P < 0.05). Exercise reduced body weight (P < 0.001), body fat (P < 0.01), and improved glucose homeostasis in SL-Ex versus SL-Se. SL-Ex presented lower VO2max (P < 0.01) and higher post-exercise LDH (P < 0.05) compared to NL-Ex rats. Although moderate exercise counteracted obesity in SL rats, early-life overnutrition restricts fitness gains in adulthood, indicating that early obesity may impair animals' adaptation to exercise.


Assuntos
Hipernutrição , Animais , Animais Recém-Nascidos , Peso Corporal , Masculino , Músculos , Obesidade/etiologia , Hipernutrição/complicações , Ratos , Ratos Wistar
6.
J Dev Orig Health Dis ; 10(6): 608-615, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31130151

RESUMO

Early-life chronic exposure to environmental contaminants, such as bisphenol-A, particulate matter air pollution, organophosphorus pesticides, and pharmaceutical drugs, among others, may affect central tissues, such as the hypothalamus, and peripheral tissues, such as the endocrine pancreas, causing inflammation and apoptosis with severe implications to the metabolism. The Developmental Origins of Health and Disease (DOHaD) concept articulates events in developmental phases of life, such as intrauterine, lactation, and adolescence, to later-life metabolism and health. These developmental phases are more susceptible to environmental changes, such as those caused by environmental contaminants, which may predispose individuals to obesity, metabolic syndrome, and chronic noncommunicable diseases later in life. Alterations in the epigenome are explored as an underlying mechanism to the programming effects on metabolism, as the expression of key genes related with central and peripheral metabolic functions may be altered in response to environmental disturbances. Studies show that environmental contaminants may affect gene expressions in mammals, especially when exposed to during the developmental phases of life, leading to metabolic disorders in adulthood. In this review, we discuss the current obesity epidemics, the DOHaD concept, pollutants' toxicology, environmental control, and the role of environmental contaminants in the central and peripheral programming of obesity and metabolic syndrome. Improving environmental monitoring may directly affect the quality of life of the population and help protect the future generations from metabolic diseases.


Assuntos
Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/etiologia , Obesidade/complicações , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/etiologia , Animais , Feminino , Humanos , Gravidez
7.
Front Physiol ; 10: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930783

RESUMO

We aimed to test whether moderate physical training can induce long-lasting protection against cardiovascular risk factors induced by high fat diet (HFD) intake, even after cessation of training. 90-days-old Wistar rats were submitted to a sedentary lifestyle or moderate physical training, three times a week, for 30 days. Following this, at 120 days-of age, sedentary and trained rats received a hypercaloric diet (HFD) or a commercial diet normal fat diet (NFD) for 30 days. Body weight (BW) and food intake were evaluated weekly. At 150 days-of age, hemodynamic measures (systolic, diastolic, mean blood pressure, pulse pressure, pulse interval and heart rate) were made via an indwelling femoral artery catheter. Beat-to-beat data were analyzed to calculate power spectra of systolic blood pressure (SBP) and pulse interval. After euthanasia, mesenteric fat pads were removed and weighted and total blood was stored for later analysis of lipid profile. Consumption of a HFD increased blood pressure (BP), pulse pressure, low frequency BP variability, BW gain, fat pad stores and induced dyslipidemia. Interestingly, prior physical training was able to partially protect against this rise in BP and body fat stores. Prior physical training did not totally protect against the effects of HFD consumption but previously trained animals did demonstrate resistance to the development of cardiometabolic alterations, which illustrate that the benefits of physical training may be partially maintained even after 30 days of detraining period.

8.
Endocrine ; 63(1): 62-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30128960

RESUMO

PURPOSE: The early-life nutritional environment affects long-term glucose homeostasis, we investigated the effects of maternal low-protein diet combined with postnatal early overfeeding on the male offspring's glucose homeostasis in adulthood. METHODS: Only male rats were used, and their delivery was considered postnatal-day 0 (PN0). Wistar rats' dams were divided into control (NP) or low-protein diet (LP). LP dams remained on the diet until PN14, after which all animals were supplied with the control diet. At PN2, litters were adjusted to 9 (control-NL) or 3 (postnatal-overfeeding-PO) pups, resulting in four experimental groups: NP-NL, NP-PO, LP-NL, and LP-PO. Litters were weaned on PN21. At PN80, a batch of animals from all experimental groups underwent surgery for cannula implantation, followed by intravenous glucose tolerance test (ivGTT), but the insulinogenic index (ISI) was calculated. At PN81, animals were euthanized and tissues were collected. RESULTS: LP-diet and early postnatal-overfeeding were effective in promoting the expected biometric outcomes at PN21 and PN81, but the LP-PO animals present a biometric profile similar to the control (NP-NL) group. Postnatal-overfeeding increased fasting glycemia in LP-PO animals (p < 0.01). In the ivGTT, postnatal-overfeeding elevated the glycemia (p < 0.0001), exacerbated in LP-PO animals (p < 0.0001). Insulinemia was reduced by both, maternal LP-diet and postnatal-overfeeding, with a higher degree of reduction in LP-PO animals (p < 0.0001). Maternal LP-diet and postnatal-overfeeding reduced the ISI (p < 0.0001). Factors interaction lead the LP-PO to a lower ISI compared to all other groups (p < 0.0001). CONCLUSIONS: The combination of low-protein diet in breastfeeding dams with postnatal overfeeding disturbed the offspring's glucose metabolism in adulthood.


Assuntos
Glicemia/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Hiperfagia/complicações , Lactação , Animais , Animais Recém-Nascidos , Ingestão de Alimentos , Feminino , Teste de Tolerância a Glucose , Homeostase , Insulina/sangue , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Ratos , Ratos Wistar
9.
Life Sci ; 213: 134-141, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343128

RESUMO

Menopause induces osteoporosis, sarcopenia, insulin resistance, and dyslipidemia. Ovariectomized (OVX) rat is an animal model, which mimetics postmenopausal conditions. The present study aimed to test the effects of strength training protocol on bone mineral density and metabolic parameters in OVX rats. Female Wistar rats were randomly separated in four groups: non-ovariectomized rats (Sham); ovariectomized rats (OVX); OVX treated with 17ß-estradiol (HR); and OVX trained group (TR). At 70-days-old OVX groups were submitted to a bilateral ovariectomy. Hormonal replacement and strength training were performed three times per week, for 60 days. 17ß-estradiol was administered by intramuscular injection (50 µg/kg of BW) and strength training protocol was composed by four series of 12 repetitions with 65-75% of 1RM. As expected, OVX impaired glucose homeostasis, promoted weight and adiposity gain, dyslipidemia, sarcopenia and osteoporosis, but hormonal replacement and strength training improved most of these parameters. Both HR and TR normalize glucose homeostasis; however, only TR restores blood insulin. OXV also reduced the maximum force in 42%, but TR improved this parameter in 110%, in addition TR prevents sarcopenia and fat mass gain. Interestingly, strength training was able to improve significantly BMD. Taken together, these data suggest that strength training can be effective in the treatment of damage caused by OVX, which in a translational context, becomes an effective non-pharmacological strategy to improve the health of postmenopausal women, reducing costs with secondary symptoms, mainly caused by weight gain, sarcopenia and osteoporosis.


Assuntos
Osteoporose/etiologia , Osteoporose/terapia , Condicionamento Físico Animal/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Ovariectomia/efeitos adversos , Ratos , Ratos Wistar , Treinamento Resistido/métodos
10.
Front Physiol ; 9: 465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867528

RESUMO

Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

11.
Sci Rep ; 7(1): 7634, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794439

RESUMO

Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.


Assuntos
Obesidade/prevenção & controle , Hipernutrição , Condicionamento Físico Animal , Tecido Adiposo/anatomia & histologia , Animais , Animais Recém-Nascidos/anatomia & histologia , Glicemia , Peso Corporal , Modelos Animais de Doenças , Feminino , Lactação , Gravidez , Ratos
12.
Eur J Nutr ; 54(8): 1353-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25528242

RESUMO

INTRODUCTION: A sedentary lifestyle and high-fat feeding are risk factors for cardiometabolic disorders. This study determined whether moderate exercise training prevents the cardiometabolic changes induced by a high-fat diet (HFD). MATERIALS AND METHODS: Sixty-day-old rats were subjected to moderate exercise three times a week for 30 days. After that, trained rats received a HFD (EXE-HFD) or a commercial normal diet (EXE-NFD) for 30 more days. Sedentary animals also received the diets (SED-HFD and SED-NFD). Food intake and body weight were measured weekly. After 120 days of life, analyses were performed. Data were analysed with two-way ANOVA and the Tukey post-test. RESULTS: Body weight gain induced by HFD was attenuated in trained animals. HFD reduced food intake by approximately 30% and increased body fat stores by approximately 75%. Exercise attenuated 80% of the increase in fat pads and increased 24% of soleus muscle mass in NFD animals. HFD induced a hyper-response to glucose injection, and exercise attenuated this response by 50%. Blood pressure was increased by HFD, and the beneficial effect of exercise in reducing blood pressure was inhibited by HFD. HFD increased vagal activity by 65% in SED-HFD compared with SED-NFD rats, and exercise blocked this increase. HFD reduced sympathetic activity and inhibited the beneficial effect of exercise on ameliorating sympathetic activity. CONCLUSION: Four weeks of moderate exercise at low frequency was able to prevent the metabolic changes induced by a HFD but not the deleterious effects of diet on the cardiovascular system.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/prevenção & controle , Condicionamento Físico Animal , Animais , Glicemia/metabolismo , Pressão Sanguínea , Composição Corporal , Peso Corporal , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Síndrome Metabólica/prevenção & controle , Músculo Esquelético/fisiologia , Obesidade/prevenção & controle , Ratos , Ratos Wistar , Comportamento Sedentário , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA