Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancer Cell ; 40(3): 289-300.e4, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216676

RESUMO

Inhibitors of the programmed cell death-1 (PD-1/PD-L1) signaling axis are approved to treat non-small cell lung cancer (NSCLC) patients, based on their significant overall survival (OS) benefit. Using transcriptomic analysis of 891 NSCLC tumors from patients treated with either the PD-L1 inhibitor atezolizumab or chemotherapy from two large randomized clinical trials, we find a significant B cell association with extended OS with PD-L1 blockade, independent of CD8+ T cell signals. We then derive gene signatures corresponding to the dominant B cell subsets present in NSCLC from single-cell RNA sequencing (RNA-seq) data. Importantly, we find increased plasma cell signatures to be predictive of OS in patients treated with atezolizumab, but not chemotherapy. B and plasma cells are also associated with the presence of tertiary lymphoid structures and organized lymphoid aggregates. Our results suggest an important contribution of B and plasma cells to the efficacy of PD-L1 blockade in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Plasmócitos/patologia
2.
Cancer Immunol Res ; 8(6): 806-818, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32238381

RESUMO

Antiangiogenic therapies that target the VEGF pathway have been used clinically to combat cancer for over a decade. Beyond having a direct impact on blood vessel development and tumor perfusion, accumulating evidence indicates that these agents also affect antitumor immune responses. Numerous clinical trials combining antiangiogenic drugs with immunotherapies for the treatment of cancer are ongoing, but a mechanistic understanding of how disruption of tumor angiogenesis may impact immunity is not fully discerned. Here, we reveal that blockade of VEGF-A with a mAb to VEGF augments activation of CD8+ T cells within tumors and potentiates their capacity to produce cytokines. We demonstrate that this phenomenon relies on the disruption of VEGFR2 signaling in the tumor microenvironment but does not affect CD8+ T cells directly. Instead, the augmented functional capacity of CD8+ T cells stems from increased tumor hypoxia that initiates a hypoxia-inducible factor-1α program within CD8+ T cells that directly enhances cytokine production. Finally, combinatorial administration of anti-VEGF with an immunotherapeutic antibody, anti-OX40, improved antitumor activity over single-agent treatments. Our findings illustrate that anti-VEGF treatment enhances CD8+ T-cell effector function and provides a mechanistic rationale for combining antiangiogenic and immunotherapeutic drugs for cancer treatment.


Assuntos
Bevacizumab/farmacologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/terapia , Hipóxia/patologia , Ativação Linfocitária/imunologia , Melanoma Experimental/terapia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citotoxicidade Imunológica/imunologia , Feminino , Humanos , Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 579(7798): 274-278, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103181

RESUMO

Despite the resounding clinical success in cancer treatment of antibodies that block the interaction of PD1 with its ligand PDL11, the mechanisms involved remain unknown. A major limitation to understanding the origin and fate of T cells in tumour immunity is the lack of quantitative information on the distribution of individual clonotypes of T cells in patients with cancer. Here, by performing deep single-cell sequencing of RNA and T cell receptors in patients with different types of cancer, we survey the profiles of various populations of T cells and T cell receptors in tumours, normal adjacent tissue, and peripheral blood. We find clear evidence of clonotypic expansion of effector-like T cells not only within the tumour but also in normal adjacent tissue. Patients with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy. Notably, expanded clonotypes found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood, which suggests a convenient approach to patient identification. Analyses of our data together with several external datasets suggest that intratumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour, suggesting continued activity of the cancer immunity cycle in these patients, the acceleration of which may be associated with clinical response.


Assuntos
Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/patologia , Variantes Farmacogenômicos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Células Clonais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T/metabolismo , Transcriptoma
4.
Eur J Immunol ; 50(6): 891-902, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32043568

RESUMO

CD96 is a member of the poliovirus receptor (PVR, CD155)-nectin family that includes T cell Ig and ITIM domain (TIGIT) and CD226. While CD96, TIGIT, and CD226 have important roles in regulating NK cell activity, and TIGIT and CD226 have also been shown to regulate T cell responses, it is unclear whether CD96 has inhibitory or stimulatory function in CD8+ T cells. Here, we demonstrate that CD96 has co-stimulatory function on CD8+ T cells. Crosslinking of CD96 on human or mouse CD8+ T cells induced activation, effector cytokine production, and proliferation. CD96 was found to transduce its activating signal through the MEK-ERK pathway. CD96-mediated signaling led to increased frequencies of NUR77- and T-bet-expressing CD8+ T cells and enhanced cytotoxic effector activity, indicating that CD96 can modulate effector T cell differentiation. Antibody blockade of CD96 or genetic ablation of CD96 expression on CD8+ T cells impaired expression of transcription factors and proinflammatory cytokines associated with CD8+ T cell activation in in vivo models. Taken together, CD96 has a co-stimulatory role in CD8+ T cell activation and effector function.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases/imunologia , Modelos Imunológicos , Animais , Antígenos CD/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout
5.
Front Immunol ; 10: 2019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552020

RESUMO

Colony-stimulating factor 1 (CSF1) and interleukin 34 (IL34) signal via the CSF1 receptor to regulate macrophage differentiation. Studies in IL34- or CSF1-deficient mice have revealed that IL34 function is limited to the central nervous system and skin during development. However, the roles of IL34 and CSF1 at homeostasis or in the context of inflammatory diseases or cancer in wild-type mice have not been clarified in vivo. By neutralizing CSF1 and/or IL34 in adult mice, we identified that they play important roles in macrophage differentiation, specifically in steady-state microglia, Langerhans cells, and kidney macrophages. In several inflammatory models, neutralization of both CSF1 and IL34 contributed to maximal disease protection. However, in a myeloid cell-rich tumor model, CSF1 but not IL34 was required for tumor-associated macrophage accumulation and immune homeostasis. Analysis of human inflammatory conditions reveals IL34 upregulation that may account for the protection requirement of IL34 blockade. Furthermore, evaluation of IL34 and CSF1 blockade treatment during Listeria infection reveals no substantial safety concerns. Thus, IL34 and CSF1 play non-redundant roles in macrophage differentiation, and therapeutic intervention targeting IL34 and/or CSF1 may provide an effective treatment in macrophage-driven immune-pathologies.


Assuntos
Homeostase/imunologia , Inflamação/imunologia , Interleucinas/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Homeostase/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NZB , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
7.
Front Microbiol ; 9: 499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616011

RESUMO

During Chagas disease, the Trypanosoma cruzi can induce some changes in the host cells in order to escape or manipulate the host immune response. The modulation of the lipid metabolism in the host phagocytes or in the parasite itself is one feature that has been observed. The goal of this mini review is to discuss the mechanisms that regulate intracellular lipid body (LB) biogenesis in the course of this parasite infection and their meaning to the pathophysiology of the disease. The interaction host-parasite induces LB (or lipid droplet) formation in a Toll-like receptor 2-dependent mechanism in macrophages and is enhanced by apoptotic cell uptake. Simultaneously, there is a lipid accumulation in the parasite due to the incorporation of host fatty acids. The increase in the LB accumulation during infection is correlated with an increase in the synthesis of PGE2 within the host cells and the parasite LBs. Moreover, the treatment with fatty acid synthase inhibitor C75 or non-steroidal anti-inflammatory drugs such as NS-398 and aspirin inhibited the LB biogenesis and also induced the down modulation of the eicosanoid production and the parasite replication. These findings show that LBs are organelles up modulated during the course of infection. Furthermore, the biogenesis of the LB is involved in the lipid mediator generation by both the macrophages and the parasite triggering escape mechanisms.

8.
Cell Stem Cell ; 22(4): 501-513.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29456158

RESUMO

Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b+GR1hi myeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy.


Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Melanoma/imunologia , Mesotelioma/imunologia , Animais , Neoplasias da Mama/terapia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Melanoma/terapia , Mesotelioma/terapia , Camundongos
9.
Front Immunol ; 9: 111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467755

RESUMO

Leptin directly activates macrophages and lymphocytes, but the role of leptin in neutrophil activation and migration is still controversial. Here, we investigate the in vivo mechanisms of neutrophil migration induced by leptin. The intraperitoneal injection of leptin (1 mg/kg) induces a time- and concentration-dependent neutrophil influx. We did not observe the enhancement of lipid bodies/droplets in neutrophils, after leptin treatment, as we had observed previously in peritoneal macrophages. The participation of leukotriene B4 (LTB4) in neutrophil recruitment triggered by leptin was investigated using different strategies. Leptin-induced neutrophil recruitment occurs both in the absence of 5-lipoxygenase activity in 5-lipoxygenase (5-LO)-/- mice and after the administration of either 5-LO inhibitor (Zileuton) or the LTB4 receptor antagonist (U-75302). Moreover, no direct induction of LTB4 by leptin could be observed. Neutrophil influx could not be prevented by the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, contrasting with the leptin-induced signaling for lipid body formation in macrophage that is mTOR-dependent. Leptin administration led to tumor necrosis factor-alpha (TNFα) production by the peritoneal cells both in vivo and in vitro. In addition, neutrophil recruitment was inhibited in tumor necrosis factor receptor 1 (TNFR1-/-) mice, indicating a role for TNF in leptin-induced neutrophil recruitment to the peritoneal cavity. Leptin-induced neutrophil influx was PI3Kγ-dependent, as it was absent in PI3Kγ-/- mice. Accordingly, leptin induced the peritoneal cells to produce CXCL1, both in vivo and in vitro, and the neutrophil influx was ablated after using an antibody against CXCL1. Our results establish TNFα/TNFR1- and CXCL1-dependent signaling as important pathways for leptin-induced neutrophil migration in vivo.


Assuntos
Quimiocina CXCL1/fisiologia , Leptina/fisiologia , Neutrófilos/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Araquidonato 5-Lipoxigenase/genética , Movimento Celular , Quimiocina CCL3/genética , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Fosfatidilinositol 3-Quinases/genética
10.
Cell Rep ; 20(8): 1978-1990, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834758

RESUMO

There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Imunidade Inata/imunologia , Células-Tronco Pluripotentes/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Modelos Animais de Doenças , Rejeição de Enxerto , Humanos , Camundongos
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 246-254, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27871882

RESUMO

Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFß and production of IL-10 and PGE2 24h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis.


Assuntos
Lisofosfatidilcolinas/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/fisiologia , PPAR gama/metabolismo , Schistosoma mansoni/metabolismo , Animais , Arginase/metabolismo , Interleucina-10/metabolismo , Lipídeos/fisiologia , Ativação de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Cell Rep ; 10(11): 1793-802, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25801020

RESUMO

Embryonic stem cells (ESCs) hold promise for the treatment of many medical conditions; however, their utility is limited by immune rejection. The objective of our study is to establish tolerance or promote engraftment of transplanted ESCs as well as mature cell populations derived from ESCs. Luciferase (luc(+))-expressing ESCs were utilized to monitor the survival of the ESCs and differentiated progeny in living recipients. Allogeneic recipients conditioned with fractioned total lymphoid irradiation (TLI) and anti-thymocyte serum (ATS) or TLI plus regulatory T cells (T(reg)) promoted engraftment of ESC allografts after transplantation. Following these treatments, the engraftment of transplanted terminally differentiated endothelial cells derived from ESCs was also significantly enhanced. Our findings provide clinically translatable strategies of inducing tolerance to adoptively transferred ESCs for cell replacement therapy of medical disorders.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/transplante , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/imunologia , Células Endoteliais/citologia , Irradiação Linfática/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco/métodos
13.
Trends Cell Biol ; 24(12): 734-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25150593

RESUMO

When wounded, eukaryotic cells reseal in a few seconds. Ca(2+) influx induces exocytosis of lysosomes, a process previously thought to promote repair by 'patching' wounds. New evidence suggests that resealing involves direct wound removal. Exocytosis of lysosomal acid sphingomyelinase (ASM) triggers endocytosis of lesions followed by intracellular degradation. Characterization of injury-induced endosomes revealed a role for caveolae, sphingolipid-enriched plasma membrane invaginations that internalize toxin pores and are abundant in mechanically stressed cells. These findings provide a novel mechanistic explanation for the muscle pathology associated with mutations in caveolar proteins. Membrane remodeling by the ESCRT complex was also recently shown to participate in small-wound repair, emphasizing that cell resealing involves previously unrecognized mechanisms for lesion removal that are distinct from the patch model.


Assuntos
Cavéolas/metabolismo , Membrana Celular/metabolismo , Cicatrização/genética , Sinalização do Cálcio/genética , Membrana Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Eucariotos/genética , Eucariotos/metabolismo , Exocitose/genética , Lisossomos/genética , Lisossomos/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
14.
Nat Commun ; 5: 3903, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24875164

RESUMO

The exact nature of the immune response elicited by autologous-induced pluripotent stem cell (iPSC) progeny is still not well understood. Here we show in murine models that autologous iPSC-derived endothelial cells (iECs) elicit an immune response that resembles the one against a comparable somatic cell, the aortic endothelial cell (AEC). These cells exhibit long-term survival in vivo and prompt a tolerogenic immune response characterized by elevated IL-10 expression. In contrast, undifferentiated iPSCs elicit a very different immune response with high lymphocytic infiltration and elevated IFN-γ, granzyme-B and perforin intragraft. Furthermore, the clonal structure of infiltrating T cells from iEC grafts is statistically indistinguishable from that of AECs, but is different from that of undifferentiated iPSC grafts. Taken together, our results indicate that the differentiation of iPSCs results in a loss of immunogenicity and leads to the induction of tolerance, despite expected antigen expression differences between iPSC-derived versus original somatic cells.


Assuntos
Diferenciação Celular/imunologia , Células Endoteliais/imunologia , Rejeição de Enxerto/imunologia , Tolerância Imunológica/imunologia , Células-Tronco Pluripotentes Induzidas/transplante , Tolerância a Antígenos Próprios/imunologia , Animais , Aorta/citologia , Células Cultivadas , Células Endoteliais/citologia , Sobrevivência de Enxerto , Granzimas/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Interleucina-10/imunologia , Camundongos , Perforina/imunologia
15.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24552180

RESUMO

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Assuntos
Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Viabilidade Microbiana , Mycobacterium leprae/fisiologia , Fagossomos/microbiologia , Animais , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Hanseníase/tratamento farmacológico , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de LDL/biossíntese , Receptores de LDL/genética , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética
16.
Biochim Biophys Acta ; 1841(1): 97-107, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120921

RESUMO

The nuclear receptor PPARγ acts as a key modulator of lipid metabolism, inflammation and pathogenesis in BCG-infected macrophages. However, the molecular mechanisms involved in PPARγ expression and functions during infection are not completely understood. Here, we investigate signaling pathways triggered by TLR2, the involvement of co-receptors and lipid rafts in the mechanism of PPARγ expression, lipid body formation and cytokine synthesis in macrophages during BCG infection. BCG induces NF-κB activation and increased PPARγ expression in a TLR2-dependent manner. Furthermore, BCG-triggered increase of lipid body biogenesis was inhibited by the PPARγ antagonist GW9662, but not by the NF-κB inhibitor JSH-23. In contrast, KC/CXCL1 production was largely dependent on NF-κB but not on PPARγ. BCG infection induced increased expression of CD36 in macrophages in vitro. Moreover, CD36 co-immunoprecipitates with TLR2 in BCG-infected macrophages, suggesting its interaction with TLR2 in BCG signaling. Pretreatment with CD36 neutralizing antibodies significantly inhibited PPARγ expression, lipid body formation and PGE2 production induced by BCG. Involvement of CD36 in lipid body formation was further confirmed by decreased BCG-induced lipid body formation in CD36 deficient macrophages. Similarly, CD14 and CD11b/CD18 blockage also inhibited BCG-induced lipid body formation, whereas TNF-α synthesis was not affected. Disruption of rafts recapitulates the latter result, inhibiting lipid body formation, but not TNF-α synthesis in BCG-infected macrophages. In conclusion, our results suggest that CD36-TLR2 cooperation and signaling compartmentalization within rafts, divert host response signaling through PPARγ-dependent and NF-κB-independent pathways, leading to increased macrophage lipid accumulation and down-modulation of macrophage response.


Assuntos
Quimiocina CXCL1/biossíntese , Metabolismo dos Lipídeos , Mycobacterium bovis , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Tuberculose , Fator de Necrose Tumoral alfa/biossíntese , Anilidas/farmacologia , Animais , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Antígenos CD18/biossíntese , Antígenos CD18/genética , Antígenos CD36/biossíntese , Antígenos CD36/genética , Quimiocina CXCL1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Receptores de Lipopolissacarídeos/biossíntese , Receptores de Lipopolissacarídeos/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/biossíntese , PPAR gama/genética , Fenilenodiaminas/farmacologia , Receptor 2 Toll-Like/genética , Tuberculose/metabolismo , Tuberculose/patologia , Tuberculose/veterinária , Fator de Necrose Tumoral alfa/genética
17.
s.l; s.n; 2014. 19 p. ilus, tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095840

RESUMO

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Assuntos
Humanos , Animais , Fagossomos/metabolismo , Fagossomos/microbiologia , Receptores de LDL/biossíntese , Células Cultivadas , Western Blotting , Colesterol/metabolismo , Perfilação da Expressão Gênica , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Viabilidade Microbiana , Interações Hospedeiro-Patógeno , Reação em Cadeia da Polimerase em Tempo Real , Hanseníase/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mycobacterium leprae/fisiologia
18.
Elife ; 2: e00926, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24052812

RESUMO

Rapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown. Here we show that muscle fibers and other cell types repair membrane wounds by a mechanism involving Ca(2+)-triggered exocytosis of lysosomes, release of acid sphingomyelinase, and rapid lesion removal by caveolar endocytosis. Wounding or exposure to sphingomyelinase triggered endocytosis and intracellular accumulation of caveolar vesicles, which gradually merged into larger compartments. The pore-forming toxin SLO was directly visualized entering cells within caveolar vesicles, and depletion of caveolin inhibited plasma membrane resealing. Our findings directly link lesion removal by caveolar endocytosis to the maintenance of plasma membrane and muscle fiber integrity, providing a mechanistic explanation for the muscle pathology associated with mutations in caveolae proteins. DOI:http://dx.doi.org/10.7554/eLife.00926.001.


Assuntos
Cavéolas/fisiologia , Sobrevivência Celular , Cicatrização , Cálcio/metabolismo , Ceramidas/metabolismo , Exocitose , Permeabilidade , Esfingomielina Fosfodiesterase/metabolismo
19.
Circ Res ; 112(3): 549-61, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23371903

RESUMO

The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.


Assuntos
Rejeição de Enxerto/imunologia , Histocompatibilidade , Células-Tronco Pluripotentes Induzidas/imunologia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/efeitos adversos , Tolerância ao Transplante , Sistema ABO de Grupos Sanguíneos/imunologia , Imunidade Adaptativa , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Antígenos de Histocompatibilidade Menor/imunologia , Receptores KIR/imunologia , Regeneração , Resultado do Tratamento
20.
Arterioscler Thromb Vasc Biol ; 33(1): e1-e10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23162013

RESUMO

OBJECTIVE: Genomewide association studies have implicated allelic variation at 9p21.3 in multiple forms of vascular disease, including atherosclerotic coronary heart disease and abdominal aortic aneurysm. As for other genes at 9p21.3, human expression quantitative trait locus studies have associated expression of the tumor suppressor gene CDKN2B with the risk haplotype, but its potential role in vascular pathobiology remains unclear. METHODS AND RESULTS: Here we used vascular injury models and found that Cdkn2b knockout mice displayed the expected increase in proliferation after injury, but developed reduced neointimal lesions and larger aortic aneurysms. In situ and in vitro studies suggested that these effects were attributable to increased smooth muscle cell apoptosis. Adoptive bone marrow transplant studies confirmed that the observed effects of Cdkn2b were mediated through intrinsic vascular cells and were not dependent on bone marrow-derived inflammatory cells. Mechanistic studies suggested that the observed increase in apoptosis was attributable to a reduction in MDM2 and an increase in p53 signaling, possibly due in part to compensation by other genes at the 9p21.3 locus. Dual inhibition of both Cdkn2b and p53 led to a reversal of the vascular phenotype in each model. CONCLUSIONS: These results suggest that reduced CDKN2B expression and increased smooth muscle cell apoptosis may be one mechanism underlying the 9p21.3 association with aneurysmal disease.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Apoptose , Doenças das Artérias Carótidas/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/deficiência , Músculo Liso Vascular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Idoso , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Transplante de Medula Óssea , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/prevenção & controle , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Neointima , Elastase Pancreática , Fenótipo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Tolueno/análogos & derivados , Tolueno/farmacologia , Transfecção , Proteína Supressora de Tumor p53/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA