Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Toxicol ; 41(6): 455-475, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36036386

RESUMO

N9-GP/Rebinyn®/Refixia® is an approved PEGylated (polyethylene glycol-conjugated) recombinant human factor IX intended for prophylactic and/or on-demand treatment in adults and children with haemophilia B. A juvenile neurotoxicity study was conducted in male rats to evaluate effects on neurodevelopment, sexual maturation, and fertility following repeat-dosing of N9-GP. Male rats were dosed twice weekly from Day 21 of age with N9-GP or vehicle for 10 weeks, followed by a dosing-free recovery period for 13 weeks and terminated throughout the dosing and recovery periods. Overall, dosing N9-GP to juvenile rats did not result in any functional or pathological effects, as measured by neurobehavioural/neurocognitive tests, including motor activity, sensory function, learning and memory as well as growth, sexual maturation, and fertility. This was further supported by the extensive histopathologic evaluation of brain tissue. Exposure and distribution of polyethylene glycol was investigated in plasma, choroid plexus, cerebrospinal fluid, and brain sections. PEG did not cross the blood brain barrier and PEG exposure did not result in any effects on neurodevelopment. In conclusion, dosing of N9-GP to juvenile rats did not identify any effects on growth, sexual maturation and fertility, clinical and histological pathology, or neurodevelopment related to PEG exposure and supports the prophylactic use of N9-GP in children.


Assuntos
Fator IX , Hemofilia B , Adulto , Animais , Criança , Fator IX/uso terapêutico , Fertilidade , Hemofilia B/tratamento farmacológico , Humanos , Lactente , Masculino , Polietilenoglicóis/toxicidade , Ratos , Proteínas Recombinantes
2.
Haemophilia ; 28(4): 568-577, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35467059

RESUMO

INTRODUCTION: Immunogenicity causing development of anti-drug antibodies (ADAs) are major challenges in the treatment of haemophilia, as well as other diseases where proteins are used for treatment. Furthermore, it is a complication for preclinical testing of such therapies in animal models. AIM: To investigate if the immunosuppressive drug CTLA4 immunoglobulin (CTLA4-Ig) can induce tolerance in haemophilia A (HA) rats receiving recombinant human coagulation factor VIII (rhFVIII) treatment. METHODS: Two different prophylactic rhFVIII compounds were given intravenously to HA rats for 4 weeks. Both rhFVIII compounds were co-administered with commercially available CTLA4-Ig or human IgG subclass 4 (hIgG4) as control, and blood samples were collected. To functionally test if pharmacological efficacy was retained, rats were subjected to a bleeding experiment under anaesthesia at end of study. RESULTS: The mean inhibitory level after 4 weeks in rats receiving rhFVIII and hIgG4 was 85.7 BU for octocog alfa and 37.4 BU for rurioctocog alfa pegol. In contrast, co-administration with CTLA4-Ig during rhFVIII therapy prevented the formation of ADAs (both binding and inhibitory) in 14/14 rats receiving octocog alfa and in 7/7 rats receiving rurioctocog alfa pegol. Moreover, we were able to show that the pharmacological efficacy of rhFVIII was preserved. CONCLUSION: In a rat model with spontaneous bleeding, co-administration of CTLA4-Ig with rhFVIII prevented antibody formation. No FVIII antibodies were detected, demonstrating that CTLA4-Ig co-administration can be applicable as a method to prevent immunogenicity, when evaluating human proteins in preclinical systems permitting continuous pharmacokinetic and pharmacodynamic assessment.


Assuntos
Hemofilia A , Abatacepte/farmacologia , Abatacepte/uso terapêutico , Animais , Anticorpos Neutralizantes , Formação de Anticorpos , Antígeno CTLA-4 , Fator VIII , Hemofilia A/tratamento farmacológico , Hemofilia A/prevenção & controle , Hemorragia/tratamento farmacológico , Humanos , Ratos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
3.
J Mol Med (Berl) ; 98(4): 585-593, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108909

RESUMO

Blocking the proteolytic capacity of urokinase-type plasminogen activator (uPA) with a monoclonal antibody (mAb) reduces arthritis progression in the collagen-induced mouse arthritis model to an extent that is on par with the effect of blocking tumor necrosis factor-alpha by etanercept. Seeking to develop a novel therapy for rheumatoid arthritis, a humanized mAb, NNC0266-0043, was selected for its dual inhibition of both the zymogen activation and the proteolytic capacity of human uPA. The antibody revealed nonlinear elimination kinetics in cynomolgus monkeys consistent with binding to and turnover of endogenous uPA. At a dose level of 20.6 mg kg-1, the antibody had a plasma half-life of 210 h. Plasma uPA activity, a pharmacodynamic marker of anti-uPA therapy, was reduced to below the detection limit during treatment, indicating that an efficacious plasma concentration was reached. Pharmacokinetic modeling predicted that sufficient antibody levels can be sustained in arthritis patients dosed subcutaneously once weekly. The anti-uPA mAb was also well tolerated in cynomolgus monkeys at weekly doses up to 200 mg kg-1 over 4 weeks. The data from cynomolgus monkeys and from human material presented here indicates that anti-uPA mAb NNC0266-0043 is suitable for clinical testing as a novel therapeutic for rheumatic diseases. KEY MESSAGES: Background: Anti-uPA therapy is on par with etanercept in a mouse arthritis model. A new humanized antibody blocks activation and proteolytic activity of human uPA. The antibody represents a radically novel mode-of-action in anti-rheumatic therapy. The antibody has PK/PD properties in primates consistent with QW clinical dosing.


Assuntos
Anticorpos Monoclonais/farmacologia , Antirreumáticos/farmacologia , Artrite Reumatoide/etiologia , Desenvolvimento de Medicamentos , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Imuno-Histoquímica , Macaca fascicularis , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo
4.
Blood Adv ; 2(22): 3126-3136, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30459211

RESUMO

Plasminogen deficiency is associated with severely compromised fibrinolysis and extravascular deposition of fibrin. In contrast, coagulation factor VIII (FVIII) deficiency leads to prolonged and excessive bleeding. Based on opposing biological functions of plasminogen and FVIII deficiencies, we hypothesized that genetic elimination of FVIII would alleviate the systemic formation of fibrin deposits associated with plasminogen deficiency and, in turn, elimination of plasminogen would limit bleeding symptoms associated with FVIII deficiency. Mice with single and combined deficiencies of FVIII (F8-/-) and plasminogen (Plg-/-) were evaluated for phenotypic characteristics of plasminogen deficiency, including wasting disease, shortened lifespan, rectal prolapse, and multiorgan fibrin deposition. Conversely, to specifically examine the role of plasmin-mediated fibrinolysis on bleeding caused by FVIII deficiency, F8-/- and F8-/-/Plg-/- mice were subjected to a bleeding challenge. Mice with a combined deficiency in FVIII and plasminogen displayed no phenotypic differences relative to mice with single FVIII or plasminogen deficiency. Plg-/- and F8-/-/Plg-/- mice exhibited the same penetrance and severity of wasting disease, rectal prolapse, extravascular fibrin deposits, and reduced viability. Furthermore, following a tail vein-bleeding challenge, no significant differences in bleeding times or total blood loss could be detected between F8-/- and F8-/-/Plg-/- mice. Moreover, F8-/- and F8-/-/Plg-/- mice responded similarly to recombinant FVIII (rFVIII) therapy. In summary, the pathological phenotype of Plg-/- mice developed independently of FVIII-dependent coagulation, and elimination of plasmin-driven fibrinolysis did not play a significant role in a nonmucosal bleeding model in hemophilia A mice.


Assuntos
Fator VIII/genética , Plasminogênio/genética , Animais , Tempo de Sangramento , Testes de Coagulação Sanguínea , Antígeno CD11b/metabolismo , Fator VIII/metabolismo , Fator VIII/uso terapêutico , Fibrina/metabolismo , Hemofilia A/tratamento farmacológico , Hemofilia A/mortalidade , Hemofilia A/veterinária , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasminogênio/deficiência , Baço/patologia
5.
J Immunol ; 200(3): 957-965, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282305

RESUMO

Genetic absence of the urokinase-type plasminogen activator (uPA) reduces arthritis progression in the collagen-induced arthritis (CIA) mouse model to an extent just shy of disease abrogation, but this remarkable observation has not been translated into therapeutic intervention. Our aim was to test the potential in mice of an Ab that blocks the proteolytic capacity of uPA in the CIA model and the delayed-type hypersensitivity arthritis model. A second aim was to determine the cellular origins of uPA and the uPA receptor (uPAR) in joint tissue from patients with rheumatoid arthritis. A mAb that neutralizes mouse uPA significantly reduced arthritis progression in the CIA and delayed-type hypersensitivity arthritis models. In the CIA model, the impact of anti-uPA treatment was on par with the effect of blocking TNF-α by etanercept. A pharmacokinetics evaluation of the therapeutic Ab revealed target-mediated drug disposition consistent with a high turnover of endogenous uPA. The cellular expression patterns of uPA and uPAR were characterized by double immunofluorescence in the inflamed synovium from patients with rheumatoid arthritis and compared with synovium from healthy donors. The arthritic synovium showed expression of uPA and uPAR in neutrophils, macrophages, and a fraction of endothelial cells, whereas there was little or no expression in synovium from healthy donors. The data from animal models and human material provide preclinical proof-of-principle that validates uPA as a novel therapeutic target in rheumatic diseases.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Membrana Sinovial/patologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/imunologia , Etanercepte/farmacologia , Feminino , Humanos , Hipersensibilidade Tardia/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neutrófilos/imunologia , Membrana Sinovial/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
6.
Blood Adv ; 1(9): 545-556, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29296974

RESUMO

The plasminogen activation (PA) system has been implicated in driving inflammatory arthritis, but the precise contribution of PA system components to arthritis pathogenesis remains poorly defined. Here, the role of urokinase plasminogen activator (uPA) and its cognate receptor (uPAR) in the development and severity of inflammatory joint disease was determined using uPA- and uPAR-deficient mice inbred to the strain DBA/1J, a genetic background highly susceptible to collagen-induced arthritis (CIA). Mice deficient in uPA displayed a near-complete amelioration of macroscopic and histological inflammatory joint disease following CIA challenge. Similarly, CIA-challenged uPAR-deficient mice exhibited significant amelioration of arthritis incidence and severity. Reduced disease development in uPA-deficient and uPAR-deficient mice was not due to an altered adaptive immune response to the CIA challenge. Reciprocal bone marrow transplant studies indicated that uPAR-driven CIA was due to expression by hematopoietic-derived cells, as mice with uPAR-deficient bone marrow challenged with CIA developed significantly reduced macroscopic and histological joint disease as compared with mice with uPAR expression limited to non-hematopoietic-derived cells. These findings indicate a fundamental role for uPAR-expressing hematopoietic cells in driving arthritis incidence and progression. Thus, uPA/uPAR-mediated cell surface proteolysis and/or uPAR-mediated signaling events promote inflammatory joint disease, indicating that disruption of this key proteolytic/signaling system may provide a novel therapeutic strategy to limit clinical arthritis.

7.
Mol Carcinog ; 55(5): 717-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809119

RESUMO

The urokinase plasminogen activator system plays a key role in tissue degradation during cancer invasion. The linker region between domains I and II of the intact, three domain urokinase receptor uPAR(I-III) is highly susceptible to proteolytic cleavage and the resulting cleaved uPAR forms are strong prognostic biomarkers in several types of cancer, i.e., high levels of the cleaved uPAR forms indicate poor survival. To better understand the role of uPAR cleavage in cancer, we have designed immunoassays for specific quantification of intact mouse uPAR [muPAR(I-III)] and mouse uPAR domain I [muPAR(I)]. The level of muPAR(I) is significantly increased in mammary tumor-bearing mice compared to controls and, notably, there is a strong correlation to tumor volume. In contrast, the tumor volume is only weakly correlated to the level of intact muPAR(I-III), indicating that cleavage of muPAR is a more specific marker for cancer than increased expression of muPAR per se. The levels of the muPAR forms are dramatically affected by in vivo challenge with a urokinase -blocking antibody, demonstrating a functional role of uPA in uPAR cleavage. The levels of the muPAR forms are, however, unaffected by uPA-deficiency, suggesting that redundant proteases maintains the task of cleaving uPAR(I-III) when uPA is absent. Our findings emphasize the significance of the cleaved uPAR forms as cancer biomarkers. The strong correlation between muPAR(I) and the tumor volume in our experimental setup may motivate investigations of human uPAR(I) as biomarker for response to oncological treatment.


Assuntos
Neoplasias Mamárias Experimentais/patologia , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Carga Tumoral , Ativador de Plasminogênio Tipo Uroquinase/química
8.
Clin Exp Metastasis ; 32(6): 543-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26040548

RESUMO

Urokinase-type plasminogen activator (uPA) is an extracellular protease that plays a pivotal role in tumor progression. uPA activity is spatially restricted by its anchorage to high-affinity uPA receptors (uPAR) at the cell surface. High tumor tissue expression of uPA and uPAR is associated with poor prognosis in lung, breast, and colon cancer patients in clinical studies. Genetic deficiency of uPA leads to a significant reduction in metastases in the murine transgenic MMTV-PyMT breast cancer model, demonstrating a causal role for uPA in cancer dissemination. To investigate the role of uPAR in cancer progression, we analyze the effect of uPAR deficiency in the same cancer model. uPAR is predominantly expressed in stromal cells in the mouse primary tumors, similar to human breast cancer. In a cohort of MMTV-PyMT mice [uPAR-deficient (n = 31) or wild type controls (n = 33)], tumorigenesis, tumor growth, and tumor histopathology were not significantly affected by uPAR deficiency. Lung and lymph node metastases were also not significantly affected by uPAR deficiency, in contrast to the significant reduction seen in uPA-deficient mice. Taken together, our data show that the genetic absence of uPAR does not influence the outcome of the MMTV-PyMT cancer model.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Células Estromais/patologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Hibridização In Situ , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfonodos/metabolismo , Metástase Linfática , Camundongos , Camundongos Transgênicos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Células Estromais/metabolismo
9.
Methods Mol Biol ; 1211: 103-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25218381

RESUMO

High-throughput analyses of gene expression such as microarrays and RNA-sequencing are widely used in early drug discovery to identify disease-associated genes. To further characterize the expression of selected genes, in situ hybridization (ISH) using RNA probes (riboprobes) is a powerful tool to localize mRNA expression at the cellular level in normal and diseased tissues, especially for novel drug targets, where research tools like specific antibodies are often lacking.We describe a sensitive ISH protocol using radiolabelled riboprobes suitable for both paraffin-embedded and cryo-preserved tissue. The riboprobes are generated by in vitro transcription using PCR products as templates, which is less time consuming compared to traditional transcription from linearized plasmids, and offers a relatively simple way to generate several probes per gene, e.g., for splice variant analyses. To ensure reliable ISH results, we have incorporated a number of specificity controls in our standard experimental setup. We design antisense probes to cover two non-overlapping parts of the gene of interest, and use the corresponding sense probes as controls for unspecific binding. Probes are furthermore tested on sections of paraffin-embedded or cryo-preserved positive and negative control cells with known gene expression. Our protocol thus provides a method for sensitive and specific ISH, which is suitable for target validation and characterization in early drug discovery.


Assuntos
Hibridização In Situ/métodos , RNA Mensageiro/análise , Animais , Criopreservação/métodos , Descoberta de Drogas/métodos , Humanos , Inclusão em Parafina , Reação em Cadeia da Polimerase/métodos , Sondas RNA/análise , Sondas RNA/genética , RNA Mensageiro/genética , Transcrição Gênica
10.
J Immunol ; 192(8): 3540-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24616477

RESUMO

Urokinase plasminogen activator (uPA) and its receptor (uPAR) coordinate a plasmin-mediated proteolytic cascade that has been implicated in cell adhesion, cell motility, and matrix breakdown, for example, during inflammation. As part of their function during inflammatory responses, macrophages move through tissues and encounter both two-dimensional (2D) surfaces and more complex three-dimensional (3D) interstitial matrices. Based on approaches employing uPA gene-deficient macrophages, plasminogen supplementation, and neutralization with specific protease inhibitors, it is reported in this study that uPA activity is a central component of the invasion of macrophages through a 3D Matrigel barrier; it also has a nonredundant role in macrophage-mediated matrix degradation. For murine macrophages, matrix metalloproteinase-9 activity was found to be required for these uPA-mediated effects. Evidence for a unique role for uPA in the inverse relationship between macrophage adhesion and 2D migration was also noted: macrophage adhesion to vitronectin was enhanced by uPA and blocked by plasminogen activator inhibitor-1, the latter approach also able to enhance in turn the 2D migration on this matrix protein. It is therefore proposed that uPA can have a key role in the inflammatory response at several levels as a central regulator of macrophage 3D invasion, matrix remodeling, and adhesion.


Assuntos
Movimento Celular , Matriz Extracelular/metabolismo , Macrófagos/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Adesão Celular/genética , Movimento Celular/genética , Ativação Enzimática , Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteólise , Ativador de Plasminogênio Tipo Uroquinase/genética
11.
Thromb Res ; 133(3): 464-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24393663

RESUMO

INTRODUCTION: A humanised monoclonal antibody, concizumab, that binds with high affinity to the Kunitz-type protease inhibitor (KPI) 2 domain of human tissue factor pathway inhibitor (TFPI) is in clinical development. It promotes coagulation by neutralising the inhibitory function of TFPI and may provide a subcutaneous prophylaxis option for patients with haemophilia. We aimed to study biodistribution and pharmacokinetics (PK) of concizumab. MATERIALS AND METHODS: Blockage of cellular TFPI by concizumab was measured by tissue factor/Factor VIIa-mediated Factor X activation on human EA.hy926 cells. Biodistribution of concizumab was analysed in rabbits by immunohistology, and the PK was measured in rabbits and rats. RESULTS AND CONCLUSIONS: Concizumab bound to cell surface TFPI on EA.hy926 cells and neutralised TFPI inhibition of Factor X activation. The antibody cross-reacted with rabbit TFPI, but not with rat TFPI, allowing for comparative PK studies. PK data in rats described a log-linear profile typical for a non-binding antibody, whereas PK data in rabbits revealed a non-linear, dose-dependent profile, consistent with a target-mediated clearance mechanism. Immunohistology in rabbits during target-saturation showed localisation of the antibody on the endothelium of the microvasculature in several organs. We observed a marked co-localisation with endogenous rabbit TFPI, but a negligible sub-endothelial build-up. Concizumab binds and neutralises the inhibitory effect of cell surface-bound TFPI. The PK profile observed in rabbits is consistent with a TFPI-mediated drug disposition. Double immunofluorescence shows co-localisation of the antibody with TFPI on the endothelium of the microvasculature and points to this TFPI as a putative target involved in the clearance mechanism.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Lipoproteínas/imunologia , Inibidores de Proteases/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Coagulação Sanguínea , Feminino , Humanos , Lipoproteínas/antagonistas & inibidores , Camundongos , Inibidores de Proteases/imunologia , Estrutura Terciária de Proteína , Coelhos , Ratos , Distribuição Tecidual , Inibidor da Tripsina de Soja de Kunitz/imunologia
12.
Clin Exp Metastasis ; 30(3): 277-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22996753

RESUMO

Plasminogen (Plg) plays a central role in tissue remodeling during ontogeny, development, and in pathological tissue remodeling following physical injury, inflammation and cancer. Plg/plasmin is, however, not critical for these processes, as they all occur to a varying extent in its absence, suggesting that there is a functional redundancy with other proteases. To explore this functional overlap in the transgenic MMTV-PyMT breast cancer metastasis model, we have combined Plg deficiency and a pharmacological metalloprotease inhibitor, which is known to reduce metastasis in this model, and has been shown to synergistically inhibit other tissue remodeling events in Plg-deficient mice. While metalloprotease inhibition dramatically reduced metastasis, we found no effect of Plg deficiency on metastasis, either independently or in combination with metalloprotease inhibition. We further show that Plg gene deficiency is of no significant consequence in this metastasis model, when analyzed in two different congenic strains: the FVB strain, and a F1 hybrid of the FVB and C57BL/6J strains. We suggest that the extensive backcrossing performed prior to our studies has eliminated the confounding effect of a known polymorphic metastasis modifier gene region located adjacent to the Plg gene.


Assuntos
Deleção de Genes , Neoplasias Mamárias Experimentais/patologia , Plasminogênio/genética , Animais , Feminino , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica
13.
Dev Biol ; 358(1): 56-67, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21802414

RESUMO

Urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9, gelatinase B) have separately been recognized to play important roles in various tissue remodeling processes. In this study, we demonstrate that deficiency for MMP9 in combination with ablation of either uPA- or tissue-type plasminogen activator (tPA)-catalyzed plasminogen activation is critical to accomplish normal gestation in mice. Gestation was also affected by simultaneous lack of MMP9 and the uPA receptor (uPAR). Interestingly, uPA-deficiency additionally exacerbated the effect of MMP9-deficiency on bone growth and an additive effect caused by combined lack in MMP9 and uPA was observed during healing of cutaneous wounds. By comparison, MMP9-deficiency combined with absence of either tPA or uPAR resulted in no significant effect on wound healing, indicating that the role of uPA during wound healing is independent of uPAR, when MMP9 is absent. Notably, compensatory upregulation of uPA activity was seen in wounds from MMP9-deficient mice. Taken together, these studies reveal essential functional dependency between MMP9 and uPA during gestation and tissue repair.


Assuntos
Metaloproteinase 9 da Matriz/deficiência , Gravidez/fisiologia , Fenômenos Fisiológicos da Pele , Ativador de Plasminogênio Tipo Uroquinase/deficiência , Cicatrização/fisiologia , Animais , Western Blotting , Pesos e Medidas Corporais , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Feminino , Técnicas Histológicas , Hibridização In Situ , Camundongos , Cicatrização/genética
14.
Endocrinology ; 151(4): 1473-86, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20203154

RESUMO

Liraglutide is a glucagon-like peptide-1 (GLP-1) analog developed for type 2 diabetes. Long-term liraglutide exposure in rodents was associated with thyroid C-cell hyperplasia and tumors. Here, we report data supporting a GLP-1 receptor-mediated mechanism for these changes in rodents. The GLP-1 receptor was localized to rodent C-cells. GLP-1 receptor agonists stimulated calcitonin release, up-regulation of calcitonin gene expression, and subsequently C-cell hyperplasia in rats and, to a lesser extent, in mice. In contrast, humans and/or cynomolgus monkeys had low GLP-1 receptor expression in thyroid C-cells, and GLP-1 receptor agonists did not activate adenylate cyclase or generate calcitonin release in primates. Moreover, 20 months of liraglutide treatment (at >60 times human exposure levels) did not lead to C-cell hyperplasia in monkeys. Mean calcitonin levels in patients exposed to liraglutide for 2 yr remained at the lower end of the normal range, and there was no difference in the proportion of patients with calcitonin levels increasing above the clinically relevant cutoff level of 20 pg/ml. Our findings delineate important species-specific differences in GLP-1 receptor expression and action in the thyroid. Nevertheless, the long-term consequences of sustained GLP-1 receptor activation in the human thyroid remain unknown and merit further investigation.


Assuntos
Calcitonina/metabolismo , Proliferação de Células/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Receptores de Glucagon/metabolismo , Glândula Tireoide/efeitos dos fármacos , Animais , Western Blotting , Calcitonina/genética , Linhagem Celular , Células Cultivadas , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Liraglutida , Macaca fascicularis , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Receptores de Glucagon/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo
15.
Cancer Res ; 70(3): 936-47, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20103644

RESUMO

Interactions between tumor and stroma cells are essential for the progression of cancer from its initial growth at a primary site to its metastasis to distant organs. The metastasis-stimulating protein S100A4 exerts its function as a stroma cell-derived factor. Genetic depletion of S100A4 significantly reduced the metastatic burden in lungs of PyMT-induced mammary tumors. In S100A4(+/+) PyMT mice, massive leukocyte infiltration at the site of the growing tumor at the stage of malignant transition was associated with increased concentration of extracellular S100A4 in the tumor microenvironment. In contrast, in S100A4(-/-) PyMT tumors, a significant suppression of T-cell infiltration was documented at the transition period. In vitro, the S100A4 protein mediated the attraction of T cells. Moreover, S100A4(+/+), but not S100A4(-/-), fibroblasts stimulated the invasion of T lymphocytes into fibroblast monolayers. In vivo, the presence of S100A4(+/+), but not S100A4(-/-), fibroblasts significantly stimulated the attraction of T lymphocytes to the site of the growing tumor. Increased levels of T cells were also observed in the premetastatic lungs of tumor-bearing mice primed to metastasize by S100A4(+/+) fibroblasts. Treatment of T cells with the S100A4 protein stimulated production of cytokines, particularly granulocyte colony-stimulating factor and eotaxin-2. The same cytokines were detected in the fluid of S100A4(+/+) PyMT tumors at the transition period. We suggest that release of S100A4 in the primary tumor stimulates infiltration of T cells and activates secretion of cytokines, thus triggering sequential events that fuel tumor cells to metastasize. Similar processes could occur in the premetastatic lungs, facilitating generation of inflammatory milieu favorable for metastasis formation.


Assuntos
Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Proteínas S100/genética , Linfócitos T/patologia , Animais , Western Blotting , Quimiocina CCL24/metabolismo , Citocinas/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Knockout , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/metabolismo , Proteínas S100/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
16.
Mol Carcinog ; 48(7): 618-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19058297

RESUMO

Matrix metalloproteinases (MMPs) have been linked to the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix. MMP-3 (stromelysin-1) is upregulated in a wide variety of human tumors. We used the MMTV-PyMT breast cancer model to determine if MMP-3 is involved in tumorigenesis and metastatic growth. In this model the stromal expression of MMP-3 mRNA resembles the predominant MMP-3 expression pattern observed in human ductal breast carcinomas. We studied a cohort of 63 PyMT transgenic mice, either deficient for MMP-3 or wild-type controls. The degree of metastasis did not differ significantly between the two groups of mice, although the median lung metastasis volume was more than threefold increased in MMTV-PyMT mice deficient in MMP-3. Likewise, primary tumor growth rate and lymph node metastasis were not significantly affected by MMP-3-deficiency. By comparing mRNA levels in MMP-3-deficient PyMT tumors with PyMT wild-type tumors we excluded compensatory transcriptional changes of other MMPs or their specific inhibitors. Thus, we conclude that genetic ablation of MMP-3 does not significantly affect tumor growth and metastasis in the MMTV-PyMT model.


Assuntos
Metaloproteinase 3 da Matriz/metabolismo , Metástase Neoplásica , Neoplasias Experimentais/patologia , Animais , Sequência de Bases , Primers do DNA , Feminino , Hidrólise , Masculino , Metaloproteinase 3 da Matriz/genética , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/enzimologia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
17.
Mol Cancer Ther ; 7(9): 2758-67, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18790756

RESUMO

Matrix metalloproteinases (MMP) have several roles that influence cancer progression and dissemination. However, low molecular weight metalloproteinase inhibitors (MPI) have not yet been tested in transgenic/spontaneous metastasis models. We have tested Galardin/GM6001, a potent MPI that reacts with most MMPs, in the MMTV-PymT transgenic breast cancer model. We followed a cohort of 81 MMTV-PymT transgenic mice that received Galardin, placebo, or no treatment. Galardin treatment was started at age 6 weeks with 100 mg/kg/d, and all mice were killed at age 13.5 weeks. Galardin treatment significantly reduced primary tumor growth. Final tumor burden in Galardin-treated mice was 1.69 cm3 compared with 3.29 cm3 in placebo-treated mice (t test, P = 0.0014). We quantified the total lung metastasis volume in the same cohort of mice. The median metastasis volume was 0.003 mm(3) in Galardin-treated mice compared with 0.56 mm(3) in placebo-treated mice (t test, P < 0.0001). Thus, metastasis burden was reduced more than 100-fold, whereas primary tumor size was reduced only 2-fold. We also found that primary tumors from Galardin-treated mice exhibited a lower histopathologic tumor grade, increased collagen deposition, and increased MMP-2 activity. MMPs are known to have tumor-promoting and tumor-inhibitory effects, and several clinical trials of broad-spectrum MPIs have failed to show promising effects. The very potent antimetastatic effect of Galardin in the MMTV-PymT model does, however, show that it may be possible to find broad-spectrum MPIs with favorable inhibition profiles, or perhaps combinations of monospecific MPIs, for future clinical application.


Assuntos
Dipeptídeos/farmacologia , Neoplasias Pulmonares/secundário , Metástase Linfática/patologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Inibidores de Metaloproteinases de Matriz , Animais , Proliferação de Células , Colágeno/metabolismo , Dipeptídeos/química , Dipeptídeos/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Carga Tumoral
18.
J Biol Chem ; 283(47): 32506-15, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18799467

RESUMO

Urokinase-type plasminogen activator (uPA) plays a central role in tissue remodeling processes. Most of our understanding of the role of uPA in vivo is derived from studies using gene-targeted uPA-deficient mice. To enable in vivo studies on the specific interference with uPA functionality in mouse models, we have now developed murine monoclonal antibodies (mAbs) directed against murine uPA by immunization of uPA-deficient mice with the recombinant protein. Guided by enzyme-linked immunosorbent assay, Western blotting, surface plasmon resonance, and enzyme kinetic analyses, we have selected two highly potent and inhibitory anti-uPA mAbs (mU1 and mU3). Both mAbs recognize epitopes located on the B-chain of uPA that encompasses the catalytic site. In enzyme activity assays in vitro, mU1 blocked uPA-catalyzed plasminogen activation as well as plasmin-mediated pro-uPA activation, whereas mU3 only was directed against the first of these reactions. We additionally provide evidence that mU1, but not mU3, successfully targets uPA-dependent processes in vivo. Hence, systemic administration of mU1 (i) rescued mice treated with a uPA-activable anthrax protoxin and (ii) impaired uPA-mediated hepatic fibrinolysis in tissue-type plasminogen activator (tPA)-deficient mice, resulting in a phenotype mimicking that of uPA;tPA double deficient mice. Importantly, this is the first report demonstrating specific antagonist-directed targeting of mouse uPA at the enzyme activity level in a normal physiological process in vivo.


Assuntos
Fibrinólise , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Anticorpos/química , Anticorpos Monoclonais/química , Ensaio de Imunoadsorção Enzimática , Feminino , Cinética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ligação Proteica , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície
19.
J Invest Dermatol ; 128(8): 2092-101, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18337830

RESUMO

Genetic ablation of plasminogen (Plg) and pharmacological inhibition of metalloproteinase activity by galardin delay skin wound healing in mice, whereas the combined inhibition of these two enzyme systems completely prevents healing. In this study, the impact of plasmin and metalloproteinases as profibrinolytic enzymes has been investigated by comparing skin wound healing in the absence and presence of fibrin. Plg deficiency impairs skin wound healing kinetics, but this delay is only partially restored in the absence of fibrin. This suggests that plasmin-mediated fibrinolysis is the primary, but not the exclusive, requirement for healing of wounds in these mice. In addition, we observe that lack of fibrin reduces Plg activation significantly during wound healing. The profibrinolytic role of metalloproteinases is revealed by the finding that lack of fibrin partially restores the otherwise arrested healing of Plg-deficient wounds after metalloproteinase inhibition. In conclusion, the residual impairment of skin wound healing in the absence of fibrin suggests the existence of a fibrin-independent substrate(s) for plasmin and metalloproteinases. Furthermore, these in vivo data reveal that galardin-sensitive metalloproteinases mediate compensatory fibrinolysis to facilitate wound healing in the absence of plasmin.


Assuntos
Fibrinólise/fisiologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasminogênio/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Animais , Dipeptídeos/farmacologia , Fibrina/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasminogênio/genética , Inibidores de Proteases/farmacologia , Pele/patologia
20.
J Mammary Gland Biol Neoplasia ; 12(1): 83-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17286208

RESUMO

Growth and invasion of breast cancer require extracellular proteolysis in order to physically restructure the tissue microenvironment of the mammary gland. This pathological tissue remodeling process depends on a collaboration of epithelial and stromal cells. In fact, the majority of extracellular proteases are provided by stromal cells rather than cancer cells. This distinct expression pattern is seen in human breast cancers and also in transgenic mouse models of breast cancer. The similar expression patterns suggest that transgenic mouse models are ideally suited to study the role of extracellular proteases in cancer progression. Here we give a status report on protease intervention studies in transgenic models. These studies demonstrate that proteases are involved in all stages of breast cancer progression from carcinogenesis to metastasis. Transgenic models are now beginning to provide vital mechanistic insight that will allow us to combat breast cancer invasion and metastasis with new protease-targeted drugs.


Assuntos
Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Peptídeo Hidrolases/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Peptídeo Hidrolases/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA