Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 57: 110933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39376482

RESUMO

This article presents an image dataset of palm leaf diseases to aid the early identification and classification of date palm infections. The dataset contains images of 8 main types of disorders affecting date palm leaves, three of which are physiological, four are fungal, and one is caused by pests. Specifically, the collected samples exhibit symptoms and signs of potassium deficiency, manganese deficiency, magnesium deficiency, black scorch, leaf spots, fusarium wilt, rachis blight, and parlatoria blanchardi. Moreover, the dataset includes a baseline of healthy palm leaves. In total, 608 raw images were captured over a period of three months, coinciding with the autumn and spring seasons, from 10 real date farms in the Madinah region of Saudi Arabia. The images were captured using smartphones and an SLR camera, focusing mainly on inflected leaves and leaflets. Date palm fruits, trunks, and roots are beyond the focus of this dataset. The infected leaf images were filtered, cropped, augmented, and categorized into their disease classes. The resulting processed dataset comprises 3089 images. Our proposed dataset can be used to train classification deep learning models of infected date palm leaves, thus enabling the early prevention of palm tree-related diseases.

2.
Entropy (Basel) ; 25(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36832620

RESUMO

The development of reinforced polymer composite materials has had a significant influence on the challenging problem of shielding against high-energy photons, particularly X-rays and γ-rays in industrial and healthcare facilities. Heavy materials' shielding characteristics hold a lot of potential for bolstering concrete chunks. The mass attenuation coefficient is the main physical factor that is utilized to measure the narrow beam γ-ray attenuation of various combinations of magnetite and mineral powders with concrete. Data-driven machine learning approaches can be investigated to assess the gamma-ray shielding behavior of composites as an alternative to theoretical calculations, which are often time- and resource-intensive during workbench testing. We developed a dataset using magnetite and seventeen mineral powder combinations at different densities and water/cement ratios, exposed to photon energy ranging from 1 to 1006 kiloelectronvolt (KeV). The National Institute of Standards and Technology (NIST) photon cross-section database and software methodology (XCOM) was used to compute the concrete's γ-ray shielding characteristics (LAC). The XCOM-calculated LACs and seventeen mineral powders were exploited using a range of machine learning (ML) regressors. The goal was to investigate whether the available dataset and XCOM-simulated LAC can be replicated using ML techniques in a data-driven approach. The minimum absolute error (MAE), root mean square error (RMSE), and R2score were employed to assess the performance of our proposed ML models, specifically a support vector machine (SVM), 1d-convolutional neural network (CNN), multi-Layer perceptrons (MLP), linear regressor, decision tree, hierarchical extreme machine learning (HELM), extreme learning machine (ELM), and random forest networks. Comparative results showed that our proposed HELM architecture outperformed state-of-the-art SVM, decision tree, polynomial regressor, random forest, MLP, CNN, and conventional ELM models. Stepwise regression and correlation analysis were further used to evaluate the forecasting capability of ML techniques compared to the benchmark XCOM approach. According to the statistical analysis, the HELM model showed strong consistency between XCOM and predicted LAC values. Additionally, the HELM model performed better in terms of accuracy than the other models used in this study, yielding the highest R2score and the lowest MAE and RMSE.

3.
J Healthc Eng ; 2022: 7853604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859929

RESUMO

These days, mobile computing devices are ubiquitous and are widely used in almost every facet of daily life. In addition, computing and the modern technologies are not really coexisting anymore. With a wide range of conditions and areas of concern, the medical domain was also concerned. New types of technologies, such as context-aware systems and applications, are constantly being infused into the medicine field. An IoT-enabled healthcare system based on context awareness is developed in this work. In order to collect and store the patient data, smart medical devices are employed. Context-aware data from the database includes the patient's medical records and personal information. The MRIPPER (Modified Repeated Incremental Pruning to Produce Error) technique is used to analyze and classify the data. A rule-based machine learning method is used in this algorithm. The rules for analyzing datasets in order to make predictions about heart disease are framed using this algorithm. MATLAB is used to simulate the proposed model's performance analysis. Other models like random forest, J48, CART, JRip, and OneR algorithms are also compared to validate the proposed model's performance. The proposed model obtains 98.89 percent accuracy, 96.76 percent precision, 99.05 percent sensitivity, 94.35 percent specificity, and 97.60 percent f-score. Predictions for subjects in the normal and abnormal classes were both accurate with 97.38 for normal and 97.93 for abnormal subjects.


Assuntos
Algoritmos , Cardiopatias , Bases de Dados Factuais , Cardiopatias/diagnóstico por imagem , Humanos , Aprendizado de Máquina
4.
Sensors (Basel) ; 22(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062437

RESUMO

Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.


Assuntos
Cardiopatias , Internet das Coisas , Inteligência Artificial , Atenção à Saúde , Cardiopatias/diagnóstico por imagem , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA