Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 454-466, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147632

RESUMO

Fine-tuning the dispersion of active metal species on widely used supports is a research hotspot in the catalysis community, which is vital for achieving a balance between the atomic utilization efficiency and the intrinsic activity of active sites. In this work, using bayerite Al(OH)3 as support directly or after precalcination at 200 or 550 °C, Pt/Al2O3 catalysts with distinct Pt dispersions from single atoms to clusters (ca. 2 nm) were prepared and evaluated for CO and NH3 removal. Richer surface hydroxyl groups on AlOx(OH)y support were proved to better facilitate the dispersion of Pt. However, Pt/Al2O3 with relatively lower Pt dispersion could exhibit better activity in CO/NH3 oxidation reactions. Further reaction mechanism study revealed that the Pt sites on Pt/Al2O3 with lower Pt dispersion could be activated to Pt0 species much easier under the CO oxidation condition, on which a higher CO adsorption capacity and more efficient O2 activation were achieved simultaneously. Compared to Pt single atoms, PtOx clusters could also better activate NH3 into -NH2 and -HNO species. The higher CO adsorption capacity and the more efficient NH3/O2 activation ability on Pt/Al2O3 with relatively lower Pt dispersion well explained its higher CO/NH3 oxidation activity. This study emphasizes the importance of avoiding a singular pursuit of single-atom catalyst synthesis and instead focusing on achieving the most effective Pt species on Al2O3 support for targeted reactions. This approach avoids unnecessary limitations and enables a more practical and efficient strategy for Pt catalyst fabrication in emission control applications.

2.
Environ Sci Technol ; 58(1): 883-894, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134887

RESUMO

Transition metal catalysts, such as copper oxide, are more attractive alternatives to noble metal catalysts for emission control due to their higher abundance, lower cost, and excellent catalytic activity. In this study, we report the preparation and application of a novel CuO/CeO2 catalyst using a hydroxyl-rich Ce(OH)x support for CO oxidation and NO reduction by CO. Compared to the catalyst prepared from a regular CeO2 support, the new CuO/CeO2 catalyst prepared from the OH-rich Ce(OH)x (CuO/CeO2-OH) showed significantly higher catalytic activity under different testing conditions. The effect of OH species in the CeO2 support on the catalytic performance and physicochemical properties of the CuO/CeO2 catalyst was characterized in detail. It is demonstrated that the abundant OH species enhanced the CuOx dispersion on CeO2, increased the CuOx-CeO2 interfaces and surface defects, promoted the oxygen activation and mobility, and boosted the NO adsorption and dissociation on CuO/CeO2-OH, thus contributing to its superior catalytic activity for both CO oxidation and NO reduction by CO. These results suggest that the OH-rich Ce(OH)x is a superior support for the preparation of highly efficient metal catalysts for different applications.


Assuntos
Elementos de Transição , Oxirredução , Oxigênio , Radical Hidroxila , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA