Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 3(15): 4388-4394, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133465

RESUMO

The electrical properties of an all-oxide core-shell ZnO-Co3O4 nanorod heterojunction were studied in the dark and under UV-vis illumination. The contact potential difference and current distribution maps were obtained utilizing new methods in dynamic multifrequency atomic force microscopy (AFM) such as electrostatic and conductive intermodulation AFM. Light irradiation modified the electrical properties of the nanorod heterojunction. The new techniques are able to follow the instantaneous local variation of the photocurrent, giving a two-dimensional (2D) map of the current-voltage curves and correlating the electrical and morphological features of the heterostructured core-shell nanorods.

2.
ACS Appl Mater Interfaces ; 11(26): 23454-23462, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252456

RESUMO

Self-powered photodetectors operating in the UV-visible-NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p-n junction nanostructure, based on a ZnO-Co3O4 core-shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV-visible-NIR p-n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1-15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO-Al2O3-Co3O4 system at zero bias is 6 times higher compared to that of ZnO-Co3O4. The responsivity ( R) and specific detectivity ( D*) of the best device were 21.80 mA W-1 and 4.12 × 1012 Jones, respectively. These results suggest a novel p-n junction structure to develop all-oxide UV-vis photodetectors based on stable, nontoxic, low-cost materials.

3.
ACS Appl Mater Interfaces ; 10(47): 40958-40965, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30398332

RESUMO

Plasmonic Cu nanoparticles (NP) were successfully deposited on ZnO substrates by atomic layer deposition (ALD) owing to the Volmer-Weber island growth mode. An evolution from Cu NP to continuous Cu films was observed with an increasing number of ALD cycles. Real and imaginary parts of the NP dielectric functions, determined by spectroscopic ellipsometry using an effective medium approach, evidence a localized surface plasmon resonance that can be tuned between the visible and near-infrared ranges by controlling the interparticle spacing and size of the NP. The resulting Cu NP/ZnO device shows an enhanced photoresponse under white light illumination with good responsivity values, fast response times, and stability under dark/light cycles. The significant photocurrent detected for this device is related to the hot-electron generation at the NP surface and injection into the conduction band of ZnO. The possibility of tuning the plasmon resonance together with the photoresponsivity of the device is promising in many applications related to photodetection, photonics, and photovoltaics.

4.
ACS Appl Mater Interfaces ; 10(43): 37671-37678, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30261135

RESUMO

Area-selective atomic layer deposition (AS-ALD) has attracted much attention in recent years due to the possibility of achieving accurate patterns in nanoscale features, which render this technique compatible with the continuous downscaling in nanoelectronic devices. The growth selectivity is achieved by starting from different materials and results (ideally) in localized growth of a single material. We propose here a new concept, more subtle and general, in which a property of the substrate is modulated to achieve localized growth of different materials. This concept is demonstrated by selective growth of high-quality metallic Cu and semiconducting Cu2O thin films, achieved by changing the type of majority point defects in the ZnO underneath film exposed to the reactive species using a patterned bilayer structure composed of highly conductive and highly resistive areas, as confirmed by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The selective growth of these materials in a patterned ZnO/Al-doped ZnO substrate allows the fabrication of p-Cu2O/n-ZnO nanojunctions showing a nonlinear rectifying behavior typical of a p-n junction, as confirmed by conductive atomic force microscopy (C-AFM). This process expands the spectra of materials that can be grown in a selective manner by ALD and opens up the possibility of fabricating different architectures, taking advantage of the area-selective deposition. This offers a variety of opportunities in the field of transparent electronics, catalysis, and photovoltaics.

5.
J Struct Biol ; 180(1): 174-89, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750418

RESUMO

Morphology of aggregation intermediates, polymorphism of amyloid fibrils and aggregation kinetics of the "Arctic" mutant of the Alzheimer's amyloid ß-peptide, Aß((1-40))(E22G), in a physiologically relevant Tris buffer (pH 7.4) were thoroughly explored in comparison with the human wild type Alzheimer's amyloid peptide, wt-Aß((1-40)), using both in situ atomic force and electron microscopy, circular dichroism and thioflavin T fluorescence assays. For arc-Aß((1-40)) at the end of the 'lag'-period of fibrillization an abrupt appearance of ≈ 3 nm size 'spherical aggregates' with a homogeneous morphology, was identified. Then, the aggregation proceeds with a rapid growth of amyloid fibrils with a variety of morphologies, while the spherical aggregates eventually disappeared during in situ measurements. Arc-Aß((1-40)) was also shown to form fibrils at much lower concentrations than wt-Aß((1-40)): ≤ 2.5 µM and 12.5 µM, respectively. Moreover, at the same concentration, 50 µM, the aggregation process proceeds more rapidly for arc-Aß((1-40)): the first amyloid fibrils were observed after c.a. 72 h from the onset of incubation as compared to approximately 7 days for wt-Aß((1-40)). Amyloid fibrils of arc-Aß((1-40)) exhibit a large variety of polymorphs, at least five, both coiled and non-coiled distinct fibril structures were recognized by AFM, while at least four types of arc-Aß((1-40)) fibrils were identified by TEM and STEM and their mass-per-length statistics were collected suggesting supramolecular structures with two, four and six ß-sheet laminae. Our results suggest a pathway of fibrillogenesis for full-length Alzheimer's peptides with small and structurally ordered transient spherical aggregates as on-pathway immediate precursors of amyloid fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Mutação de Sentido Incorreto , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/ultraestrutura , Soluções Tampão , Dicroísmo Circular , Humanos , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão e Varredura , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA