Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732681

RESUMO

Experiments have assessed various polymer composites for radiation shielding in diverse applications. These composites are lighter and non-toxic when compared to lead (Pb), making them particularly effective in diagnostic imaging for shielding against low-energy photons. This study demonstrates the fabrication of four composites by combining a base material, specifically a high-density polyethylene (HDPE) polymer, with 10% and 20% silicon (Si) and silicon carbide (SiC), respectively. Additionally, 5% molybdenum (Mo) was incorporated into the composites as a heavy metal element. The composites obtained were fabricated into 20 disks with a uniform thickness of 2 mm each. Discs were exposed to radiation from a low-energy X-ray source (32.5-64.5 keV). The chemical and physical properties of composites were assessed. The shielding ability of samples was evaluated by determining the linear and mass attenuation coefficients (µ and µm), radiation protection efficiency (RPE), half-value layer (HVL), and mean free path (MFP). According to our findings, supplementing HDPE with additives improved the attenuation of beams. The µm values showed that composite X-ray shielding characteristics were enhanced with filler concentration for both Si and SiC. Polymer composites with micro-molecule fillers shelter X-rays better than polymers, especially at low energy. The HVL and MFB values of the filler are lower than those of the pure HDPE sample, indicating that less thickness is needed to shield at the appropriate energy. HC-20 blocked 92% of the incident beam at 32.5 keV. This study found that increasing the composite sample thickness or polymer filler percentage could shield against low-energy radiation.

2.
BJR Open ; 5(1): 20220035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389000

RESUMO

Objectives: It is essential to study the dosimetric performance and reliability of personal dosimeters. This study examines and compares the responses of two commercial thermoluminescence dosimeters (TLDs), the TLD-100 and the MTS-N. Methods: We compared the two TLDs to various parameters such as energy dependence, linearity, homogeneity, reproducibility, light sensitivity (zero point), angular dependence, and temperature effects using the IEC 61066 standard. Results: The results acquired showed that both TLD materials show linear behavior as indicated by the quality of the fit. In addition, the angular dependence results for both detectors show that all dose responses are within the range of acceptable values. However, the TLD-100 outperformed the MTS-N in terms of light sensitivity reproducibility for all detectors together, while the MTS-N outperforms the TLD-100 for each detector independently and that showed TLD-100 has more stability than MTS-N. The MTS-N shows better batch homogeneity (10.84%) than TLD-100 (13.65%). The effect of temperature in signal loss was clearer at higher temperature 65°C and it was however below ±30%. Conclusions: The overall results for dosimetric properties determined in terms of dose equivalents for all combinations of detectors are satisfactory. The MTS-N cards have better results in the energy dependence, angular dependency, batch homogeneity and less signal fading, whereas the TLD-100 cards are less sensitive to light and more reproducible. Advances in knowledge: Although previous studies showed several types of comparisons between TLDs, they have used limited parameters and different data analysis. This study has dealt with more comprehensive characterization methods and examinations combining TLD-100 and MTS-N cards.

3.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499866

RESUMO

The usage of radiation is mandatory for modern life; in the same manner, controlling the outflow of harmful radiation is vital and could be achieved via employing a shielding material to eliminate any potential nuclear and radiation accidents and incidents. Considering this point, this study aims to manufacture composite samples based on waste marble as novel radiation shields. The physical and radiation shielding ability of the prepared shields were determined and analyzed. For this purpose, a high-purity germanium (HPGe) detector was used to detect the incoming photons emitted from three point sources (Am-241, Cs-137, and Co-60). The radiation attenuation factors for the new marble-based composites were measured for some energies, ranging from 0.06 to 1.333 MeV. We examined the effect of increasing the PbCO3 and CdO contents on the physical properties and radiation attenuation factors of the newly developed radiation shielding absorber. We found that the density of the samples increases from 1.784 to 1.796 g/cm3 when the CdO changes from 0 to 12.5 wt%. The linear attenuation coefficient (LAC) for all marble compositions has the maximum value at 0.06 MeV, while the LAC decreases with increasing energy. The highest LAC was found for Marb-3, with a composition of waste marble (50 wt%), polyester (25 wt%), PbCO3 (17.5 wt%), and CdO (7.5 wt%). We studied the impact of the addition of CdO on the expense of PbCO3 and we found that the half value layer (HVL) decreases with increasing the CdO content. Hence, when there is no space problem, the newly developed radiation shielding absorber can be used to maintain the cost effectiveness and environmentally friendliness of products.

4.
Sci Rep ; 12(1): 3548, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241738

RESUMO

A series of five glass samples have a chemical composition of (55-x) B2O3 + 5 Bi2O3 + 20SrF2 + 20Na2O + xAg2O with varied doping ratios x = 0, 1, 2, 3, and 4 mol% were fabricated using the melt quenching technique to study the effect of B2O3 replacement by Ag2O on the physical, mechanical, optical and gamma-ray shielding capacity of the fabricated glasses. The Cary 5000 UV-Vis-NIR measured the optical absorption in the wavelength range between 200 and 3000 nm. Based on the measured optical absorption, energy (direct/indirect) bandgap and Urbach energy were calculated. Moreover, the measured samples density, molar volume, packing density, dissociation energy, and mechanical properties for the fabricated glasses were calculated using the concepts of the Makishima-Mackenzie model. In this regard, the microhardness was decreased from 4.070 to 3.931 GPa with raising the Ag2O concentration. The effect of B2O3 replacement on the shielding capacity was also evaluated using the Monte Carlo simulation. The simulation results showed that the replacement of B2O3 causes a significant increase in the shielding parameters like linear attenuation coefficient and radiation shielding capacity. The best radiation shielding properties were achieved for a glass sample with 4 mol% Ag2O compound. Its linear attenuation coefficient varied between 8.091 and 0.134 cm-1, raising the gamma photon energy between 0.059 and 2.506 MeV.

5.
Materials (Basel) ; 14(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34772229

RESUMO

This work aims to experimentally report the radiation attenuation factors for four different clays (red, ball, kaolin and bentonite clays) at four selected energies (emitted from Am-241, Cs-137, and Co-60). The highest relative difference in the mass attenuation coefficient (MAC) is equal to -3.02%, but most of the other results are much smaller than this value, proving that the experimental and theoretical data greatly agree with each other. From the MAC results, the shielding abilities of the clay samples at 0.060 MeV follow the order of: bentonite > red > ball > kaolin. Thus, at low energies, the bentonite clay sample provides the most effective attenuation capability out of the tested clays. The half value layer (HVL) increases as energy increases, which suggests that, only a thin clay sample is needed to sufficiently absorb the radiation at low energies, while at higher energies a thicker sample is needed to shield the same amount of high energy radiated. Furthermore, bentonite clay has the lowest HVL, while the kaolin clay has the greatest HVL at all energies. The radiation protection efficiency (RPE) values at 0.060 MeV are equal to 97.982%, 97.137%, 94.242%, and 93.583% for bentonite clay, red clay, ball clay, and kaolin clay, respectively. This reveals that at this energy, the four clay samples can absorb almost all of the incoming photons, but the bentonite clay has the greatest attenuation capability at this energy, while kaolin clay has the lowest.

6.
Polymers (Basel) ; 13(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577982

RESUMO

Recently developed polymer-based composites could prove useful in many applications such as in radiation shielding. In this work, the potential of a bismuth oxide (Bi2O3) nanofiller based on an LDPE polymer was developed as lead-free X-ray radiation shielding offering the benefits of lightness, low-cost and non-toxic compared to pure lead. Three different LDPE-based composites were prepared with varying weight percentages of Bi2O3: 5%, 10% and 15%. The characterizations were extended to include structural properties, physical features, mechanical and thermal properties, and radiation shielding efficiency for the prepared nanocomposites. The results revealed that the incorporation of the Bi2O3 nanofiller into an LDPE improved the density of the composites. There was also a slight increase in the tensile strength and tensile modulus. In addition, there was a clear improvement in the efficiency of the shield when fillers were added to the LDPE polymer. The LDPE + Bi2O3 (15%) composite needed the lowest thickness to attenuate 50% of the incident X-rays. The LDPE + Bi2O3 (15%) polymer can also block around 80% of X-rays at 47.9 keV. In real practice, a thicker shield of the proposed composite materials, or a higher percentage of the filler could be employed to safely ensure the radiation is blocked.

7.
Appl Radiat Isot ; 178: 109953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34560514

RESUMO

In respect of radiation exposure assessments, thermoluminescent dosimeters (TLD) represent a notable and important subset of passive detector technology, gaining widespread use over a period of many decades, not least for medical applications. TLDs are available in a range of physical and chemical forms, in particular the popularity of phosphor-based commercial products arising from features that include availability down to low mm dimensions, soft-tissue equivalence in some cases, and relatively low TL fading. Novel doped silica glass TL material fabricated as fibres also offer favourable responses, recent developments in co-doping leading to their ability to also provide for diagnostic radiology applications, adding to the attractive features of being impervious to water, of good sensitivity, and generally offering wide dynamic range. Thus said, doping and fibre fabrication involve relatively high costs. Accordingly, herein exploratory investigations are made of the cost-effective colourless silica-based glass medium from which marbles are made, reduced into chip form for ease of application, examining sensitivity to dose. In particular, the study focuses on the computerised tomography clinical application regime, 80- to 140 kVp, with excellent response being shown for doses within the range 2- to 50 mGy.


Assuntos
Dosimetria Termoluminescente/instrumentação , Tomografia Computadorizada por Raios X/métodos , Vidro
8.
Materials (Basel) ; 14(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34501047

RESUMO

Utilizing a polymer-based radiation shield offers lightweight, low cost, non-toxic compared to lead and solution for eliminating generated secondary neutrons. Incorporating silicon (i.e., one of the most abundant elements) in new applications, such as shielding, would have an impact on the economy and industry. In this study, seven potential shielding materials, composed of silicon, silicon carbide, and boron carbide embedded ethylene vinyl acetate (EVA) copolymers, are proposed. The shielding performance of these composite materials, including the attenuation coefficients (µ), the mass attenuation coefficients (µm), the half value layer (HVL), the mean free path (MFP), and the radiation protection efficiency (RPE) were examined using photon beams. Measured µm were verified against the calculated values. The averaged agreement was within ±7.4% between the experimental measurements and the theoretical calculation results. The HVL and MFP measured values for the polymer composites were lower than that for the pure EVA polymer, indicating the fillers in the polymers enhanced the shielding performance. The EVA + SiC (30%) and EVA + Si (15%) + B4C (15%) composites required the lowest thickness to stop 50% of the incident photons. The evaluation of experimental results of the RPE revealed that the polymer composites containing SiC (30%), Si (15%) + B4C (15%), or SiC (15%) + B4C (15%) succeeded in blocking 90-91% of X-rays at nearly 80 keV. However, a thicker shield of the proposed composite materials or combined layers with other high-Z materials could be used for higher energies.

9.
J Appl Clin Med Phys ; 18(5): 210-219, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28755419

RESUMO

PURPOSE: In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC-408 plastic scintillator, a commercial camera, and a computer. METHODS: The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose-rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth-dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. RESULTS: The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short-term reproducibility to within 0.80%. No dose rate dependency was observed in this work. CONCLUSIONS: This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time-varying fields.


Assuntos
Terapia com Prótons/normas , Contagem de Cintilação/instrumentação , Transferência Linear de Energia , Método de Monte Carlo , Plásticos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA