Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Chromatogr Sci ; 62(3): 249-256, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36617945

RESUMO

Afatinib is designated as the first-line management therapy for patients with advanced non-small cell lung cancer, and metastatic head and neck cancer. LC coupled to MS/MS can be utilised in therapeutic drug monitoring to ensure optimal use of Afatinib with the reduction of its possible adverse reactions. The aim of this investigation was to determine the pharmacokinetics of Afatinib in rats after single IV (2 mg/kg) and oral (8 mg/kg) doses. Therefore, a selective, sensitive and precise UPLC MS/MS assay thru electrospray ionisation basis with positive ionisation approach was established to measure Afatinib concentrations in the rat. The precision and accuracy of the developed assay method in the concentration range of 10-1000 ng/ml show no significant difference among inter- and-intra-day analysis (P > 0.05). Linearity was detected over the studied range with correlation coefficient, r > 0.995 (n = 6/day). The pharmacokinetics of Afatinib in the rat after a single IV dose showed a mean terminal half-life of 4.6 ± 0.97 h, and a mean clearance 480 ± 80 ml/h/kg. After PO administration, a short absorption phase with a mean Tmax of 1.3 ± 0.6 h with the highest concentration of 513.9 ± 281.1 ng/ml, and the lowest concentration detected after 24 h was 18.8 ± 10.7 ng/ml.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Afatinib , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Administração Oral , Reprodutibilidade dos Testes
2.
Microb Cell Fact ; 22(1): 173, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670273

RESUMO

BACKGROUND: Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS: FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1ß expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1ß expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS: These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.


Assuntos
Nanopartículas , Alga Marinha , Selênio , Animais , Ratos , Antioxidantes , Ciclo-Oxigenase 2 , Anti-Inflamatórios , Anticorpos
3.
Int J Pharm X ; 6: 100208, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680878

RESUMO

This study aimed to formulate and statistically optimize cubosomal formulations of metformin (MTF) to enhance its breast anticancer activity. A Box Behnken design was employed using Design-Expert® software. The formulation variables were glyceryl monooleate concentration (GMO) w/w%, Pluronic F-127 concentration (PF127) w/w% and Tween 80 concentration w/w% whereas Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. The design expert software was used to perform the process of optimization numerically. X ray diffraction (XRD), Transmission electron microscope (TEM), in-vitro release study, short-term stability study, and in in-vitro cell proliferation assay on the MDA-MB-231 breast cancer and LOVO cancer cell lines were used to validate the optimized cubosomal formulation. The optimized formulation had a composition of 4.35616 (w/w%) GMO, 5 (w/w%) PF127 and 7.444E-6 (w/w%) Tween 80 with a desirability of 0.733. The predicted values for EE%, VS and ZP were 78.0592%, 307.273 nm and - 26.8275 mV, respectively. The validation process carried out on the optimized formula revealed that there were less than a 5% variance from the predicted responses. The XRD thermograms showed that MTF was encapsulated inside the cubosomal vesicles. TEM images of the optimized MTF cubosomal formulation showed spherical non-aggregated nanovesicles. Moreover, it revealed a sustained release profile of MTF in comparison to the MTF solution. Stability studies indicated that optimum cubosomal formulation was stable for thirty days. Cytotoxicity of the optimized cubosomal formulation was enhanced on the MDA-MB-231 breast and LOVO cancer cell lines compared to MTF solution even at lower concentrations. However, it showed superior cytotoxic effect on breast cancer cell line. So, cubosomes could be considered a promising carrier of MTF to treat breast and colon cancers.

4.
Colloids Surf B Biointerfaces ; 229: 113466, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515959

RESUMO

Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.


Assuntos
Neoplasias Pulmonares , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Carcinogênese , Terapia de Alvo Molecular/métodos
5.
Int J Pharm ; 642: 123111, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37302668

RESUMO

Currently, the spread of antimicrobial resistance dissemination is expanding at an accelerated rate. Therefore, numerous researchers haveinvestigatedalternative treatments in an effort to combat this significant issue. This study evaluated the antibacterial properties of zinc-oxide nanoparticles (ZnO NPs) synthesised by Cycas circinalis against Proteus mirabilis clinical isolates. HPLC was utilised for the identification and quantification of C. circinalis metabolites. The green synthesis of ZnO NPs has been confirmed using UV-VIS spectrophotometry. The Fourier transform infrared spectrum of metal oxide bonds has been compared to the free C. circinalis extract spectrum. The crystalline structure and elemental composition were investigated using X-ray diffraction and Energy-dispersive X-ray techniques. The morphology of nanoparticles was assessed by scanning and transmission electron microscopies, which revealed an average particle size of 26.83 ± 5.87 nm with spherical outlines. The dynamic light scattering technique confirms the optimum stability of ZnO NPs with a zeta potential value equal to 26.4 ± 0.49 mV. Using agar well diffusion and broth microdilution methods, we elucidated the antibacterial activity of ZnO NPs in vitro. MIC values for ZnO NPs ranged from 32 to 128 µg/mL. In 50% of the tested isolates, the membrane integrity was compromised by ZnO nanoparticles. In addition, we assessed the in vivo antibacterial capacity of ZnO NPs by a systemic infection induction using P. mirabilis bacteria in mice. The bacterial count in the kidney tissues was determined, and a significant decrease in CFU/g tissues was observed. The survival rate was evaluated, and the ZnO NPs treated group had higher survival rates. The histopathological studies demonstrated that kidney tissues treated with ZnO NPs had normal structures and architecture. Moreover, the immunohistochemical examinations and ELISA revealed that ZnO NPs substantially decreased the proinflammatory mediators NF-kß, COX-2, TNF-α, IL-6, and IL-1ß in kidney tissues. In conclusion, the results of this study suggest that ZnO NPs are effective against bacterial infections caused by P. mirabilis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Camundongos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Proteus mirabilis , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Óxidos , Extratos Vegetais/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Polymers (Basel) ; 15(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37050387

RESUMO

Various factors limit the use of simvastatin as an anticancer drug. Therefore, this study aimed to analyse simvastatin (SIM)-loaded cubosome efficacy against breast cancer. SIM-loaded cubosomes were prepared using the emulsification method using different glyceryl monooleate, Pluronic F127 (PF-127), and polyvinyl alcohol (PVA) ratios. The best cubosomal formula was subjected to an in vitro cytotoxicity analysis using the human breast cancer cell line, MDA-MB-231 (MDA) (ATCC, HTB-26), and formulated as oral disintegrating tablets through direct compression. PF-127 and PVA positively affected drug loading, and the entrapment efficiency percentage of different SIM-cubosomal formulations ranged from 33.52% to 80.80%. Vesicle size ranged from 181.9 ± 0.50 to 316.6 ± 1.25 nm. PF-127 enhanced in vitro SIM release from cubosome formulations due to its solubilising action on SIM. The in vitro dissolution analysis indicated that SIM exhibited an initial dissolution of 10.4 ± 0.25% within the first 5 min, and 63.5 ± 0.29% of the loaded drug was released after 1 h. Moreover, cubosome formula F3 at 25 and 50 µg/mL doses significantly decreased MDA cell viability compared to the 12.5 µg/mL dose. The untreated SIM suspension and drug-free cubosomes at all doses had no significant influence on MDA cell viability compared to the control.

7.
Saudi Pharm J ; 31(1): 135-146, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685296

RESUMO

The present study was aimed to formulate and evaluate fast dissolving oral film of Rosuvastatin calcium to improve its bioavailability in comparison to typical solid oral dosage forms. The drug was formulated as solid dispersion with hydrophilic polymers and assessed for different constraints such as drug content, saturated solubility, and drug-polymer interaction. Best formula was selected and prepared in the form of orodispersible film. The films were developed by solvent casting method and examined for weight variations, drug content, folding endurance, pH, swelling profile, disintegration time, and in vitro dissolution. Further pharmacokinetic study was also performed on rabbit and compared with that of the marketed oral formulation. The drug and the polymers were found to be compatible with each other by FTIR study. Maximum solubility was found at drug polymer ratio of 1:4 and that was 54.53 ± 2.05 µg/mL. The disintegration time of the developed film was observed to be 10 ± 2.01 s, while release of the Rosuvastatin from the film was found to be 99.06 ± 0.40 in 10 min. Stability study shown that developed film was stable for three months. Further pharmacokinetic study revealed that developed orodispersible film had enhance oral bioavailability as compared to marketed product (Crestor® tablets). Conclusively, the study backs the development of a viable ODF of Rosuvastatin with better bioavailability.

8.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432712

RESUMO

This study aimed to make a formulation and statistical optimization of transethosomal formulations of rosuvastatin (ROS) to enhance its topical wound healing efficiency. Design-Expert® software was used to employ I optimal design. The formulation variables in the study were surfactant concentration (%w/v), ethanol concentration (%w/v) and surfactant type (span 60 or tween 80), while the dependent responses were entrapment efficiency percent (EE%), vesicle size (VS) and zeta potential (ZP). The numerical optimization process employed by the design expert software resulted in an optimum formula composed of 0.819439 (%w/v) span 60, 40 (%w/v) ethanol and 100 mg lecithin with a desirability of 0.745. It showed a predicted EE% value of 66.5517 vs. 277.703 nm and a ZP of -33. When it was prepared and validated, it showed less than a 5% deviation from the predicted values. The optimum formula was subjected to further characterizations, such as DSC, XRD, TEM, in vitro release, the effect of aging and wound healing efficiency. The DSC thermogram made a confirmation of the compatibility of ROS with the ingredients used in the formulation. XRD showed the encapsulation of ROS in the transethosomal vesicles. The TEM image pointed out the spherical nature of the nanovesicles with the absence of aggregation. Additionally, the optimum formula revealed an enhancement of drug release in comparison with the drug suspension. It also showed good stability for one month. Furthermore, it revealed good wound healing efficiency when compared with the standard silver sulphadiazine (1% w/w) ointment or the drug-loaded gel, which could be related to the enhanced penetration of the nanosized vesicles of TESMs into the skin, which enhances the wound healing process. So, it could be regarded as a promising carrier of ROS for the treatment of chronic wounds.

10.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145278

RESUMO

We aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using the endophytic fungal extract of Aspergillus niger. The prepared ZnO NPs were characterized, and their in vitro and in vivo antibacterial activity was investigated. Isolated endophytic fungus identification was carried out using 18S rRNA. A. niger endophytic fungal extract was employed for the green synthesis of ZnO NPs. The in vitro antibacterial activity of the prepared ZnO NPs was elucidated against Staphylococcus aureus using the broth microdilution method and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the in vivo antibacterial activity was elucidated using a systemic infection model in mice. The biosynthesized ZnO NPs showed a maximum optical density at 380 nm with characteristic peaks on the Fourier-transform infrared spectrum. The X-ray diffraction pattern was highly matched with a standard platform of zinc oxide crystals. Energy-dispersive X-ray analysis confirmed that the main composition of nanoparticles was zinc and oxygen atoms. Scanning and transmission electron microscopies showed spherical geometry with a smooth surface. Zeta potential measurements (26.6 ± 0.56 mV) verified the adequate stability of ZnO NPs. Minimum inhibitory concentrations of ZnO NPs against S. aureus isolates ranged from 8 to 128 µg/mL. Additionally, ZnO NPs revealed antibiofilm activity, resulting in the downregulation of the tested biofilm genes in 29.17% of S. aureus isolates. Regarding the in vivo experiment, ZnO NPs reduced congestion and fibrosis in liver and spleen tissues. They also improved liver function, increased the survival rate, and significantly decreased inflammatory markers (p < 0.05). ZnO NPs synthesized by A. niger endophytic fungus revealed a promising in vivo and in vitro antibacterial action against S. aureus isolates.

11.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36145303

RESUMO

A liposphere system for intranasal delivery of quetiapine fumarate (QTF) was created to assess the potential for enhanced drug delivery. We investigated the effects of particle size, entrapment effectiveness, poly dispersibility index, and pluronic incorporation percentage on these variables. The optimal formula was examined using a TEM, and investigations into DSC, XRD, and FTIR were made. Optimized liposphere formulation in vitro dissolution investigation with a mean diameter of 294.4 ± 18.2 nm revealed about 80% drug release in 6 h. The intranasal injection of QTF-loaded lipospheres showed a shorter Tmax compared to that of intranasal and oral suspension, per the findings of an in vivo tissue distribution investigation in Wistar mice. Lipospheres were able to achieve higher drug transport efficiency (DTE %) and direct nose-to-brain drug transfer (DTP %). A potentially effective method for delivering QTF to specific brain regions is the liposphere system.

12.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36015089

RESUMO

This study aimed to formulate and statistically optimize glycerosomal formulations of Quetiapine fumarate (QTF) to increase its oral bioavailability and enhance its brain delivery. The study was designed using a Central composite rotatable design using Design-Expert® software. The independent variables in the study were glycerol % w/v and cholesterol % w/v, while the dependent variables were vesicle size (VS), zeta potential (ZP), and entrapment efficiency percent (EE%). The numerical optimization process resulted in an optimum formula composed of 29.645 (w/v%) glycerol, 0.8 (w/v%) cholesterol, and 5 (w/v%) lecithin. It showed a vesicle size of 290.4 nm, zeta potential of -34.58, and entrapment efficiency of 80.85%. The optimum formula was further characterized for DSC, XRD, TEM, in-vitro release, the effect of aging, and pharmacokinetic study. DSC thermogram confirmed the compatibility of the drug with the ingredients. XRD revealed the encapsulation of the drug in the glycerosomal nanovesicles. TEM image revealed spherical vesicles with no aggregates. Additionally, it showed enhanced drug release when compared to a drug suspension and also exhibited good stability for one month. Moreover, it showed higher brain Cmax, AUC0-24, and AUC0-∞ and plasma AUC0-24 and AUC0-∞ in comparison to drug suspension. It showed brain and plasma bioavailability enhancement of 153.15 and 179.85%, respectively, compared to the drug suspension. So, the optimum glycerosomal formula may be regarded as a promising carrier to enhance the oral bioavailability and brain delivery of Quetiapine fumarate.

13.
Pharmaceutics ; 14(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631561

RESUMO

The continuing growth of bacterial resistance makes the top challenge for the healthcare system especially in bone-infections treatment. Current estimates reveal that in 2050 the death ratio caused by bacterial infections can be higher than cancer. The aim of this study is to provide an alternative to currently available bone-infection treatments. Here we designed mesoporous hydroxyapatite nanocarriers functionalized with citrate (Ctr-mpHANCs). Amoxicillin (AMX) is used as a model drug to load in Ctr-mpHANCs, and the drug loading was more than 90% due to the porous nature of nanocarriers. Scanning electron microscopy shows the roughly spherical morphology of nanocarriers, and the DLS study showed the approximate size of 92 nm. The Brunauer-Emmett-Teller (BET) specific surface area and pore diameter was found to be about 182.35 m2/g and 4.2 nm, respectively. We noticed that almost 100% of the drug is released from the AMX loaded Ctr-mpHANCs (AMX@Ctr-mpHANCs) in a pH-dependent manner within 3 d and 5 d at pH 2.0 and 4.5, respectively. The sustained drug release behaviour was observed for 15 d at pH 7.4 and no RBCs hemolysis by AMX@Ctr-mpHANCs. The broth dilution and colony forming unit (CFU) assays were used to determine the antimicrobial potential of AMX@Ctr-mpHANCs. It was observed in both studies that AMX@Ctr-mpHANCs showed a significant reduction in the bacterial growth of S. aureus, E. coli, and P. aeruginosa as compared to Ctr-mpHANCs with no bacteria-killing. Thus, we proposed that Ctr-mpHANCs can be used as a drug carrier and a treatment option for bone infections caused by bacteria.

14.
Drug Deliv ; 28(1): 2562-2573, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866534

RESUMO

The present research was aimed to develop luteolin (LL) loaded pegylated bilosomes (PG-BLs) for oral delivery. The luteolin bilosomes (BLs) were prepared by the thin-film hydration method and further optimized by the Box-Behnken design (four-factors at three-levels). The prepared LL-BLs were evaluated for vesicle size (VS), PDI, zeta potential (ZP), and entrapment efficiency to select the optimized formulation. The optimized formulation was further assessed for surface morphology, drug release, gut permeation, antioxidant, and antimicrobial study. The cytotoxicity study was conducted on breast cancer cell lines (MDA-MB-231 and MCF7). The optimized formulation LL-PG-BLs-opt exhibited a VS of 252.24 ± 3.54 nm, PDI of 0.24, ZP of -32 mV with an encapsulation efficiency of 75.05 ± 0.65%. TEM study revealed spherical shape vesicles without aggregation. The DSC and XRD results revealed that LL was encapsulated into a PG-BLs matrix. LL-PG-BLs-opt exhibited a biphasic release pattern as well as significantly high permeation (p<.05) was achieved vis-a-vis LL-BL-opt and LL dispersion. The antioxidant activity result revealed 70.31 ± 3.22%, 83.76 ± 2.56%, and 96.87 ± 2.11% from LL-dispersion, LL-BLs-opt, and LL-PG-BLs-opt, respectively. Furthermore, LL-PG-BLs-opt exhibited high cell viability on both cell lines than LL-BL-opt and pure LL. The IC50 value was found to be 390 µM and 510 µM against MCF7 and MDA-MB-231 cancer cells, respectively. The antimicrobial activity result exhibited LL-PG-BLs-opt had better antibacterial activity than pure LL against Staphylococcus aureus and Escherichia coli. Hence, PG-BLs might provide an efficient nano oral delivery for the management of the different diseases.


Assuntos
Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Luteolina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Absorção Intestinal , Luteolina/administração & dosagem , Luteolina/farmacocinética , Polietilenoglicóis/química , Propriedades de Superfície
15.
Pharmaceutics ; 13(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34683951

RESUMO

Atorvastatin Calcium (At-Ca) has pleiotropic effect as anti-inflammatory drug beside its main antihyperlipidemic action. Our study was conducted to modulate the anti-inflammatory effect of At-Ca to be efficiently sustained for longer time. Single oil-water emulsion solvent evaporation technique was used to fabricate At-Ca into polymeric nanoparticles (NPs). In vitro optimization survey was performed on Poly(lactide-co-glycolide) (PLGA) loaded with At-Ca regrading to particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (% EE), surface morphology and in vitro release pattern. In vitro drug-polymers interactions were fully scanned using Fourier-Transform Infrared Spectroscopy (FTIR) and Differential Scanning calorimetry (DSC) proving that the method of fabrication is an optimal strategy maintaining the drug structure with no interaction with polymeric matrix. The optimized formula with particle size (248.2 ± 15.13 nm), PDI (0.126 ± 0.048), zeta potential (-12.41 ± 4.80 mV), % EE (87.63 ± 3.21%), initial burst (39.78 ± 6.74%) and percent cumulative release (83.63 ± 3.71%) was orally administered in Male Sprague-Dawley rats to study the sustained anti-inflammatory effect of At-Ca PLGA NPs after carrageenan induced inflammation. In vivo results demonstrate that AT-Ca NPs has a sustained effect extending for approximately three days. Additionally, the histological examination revealed that the epidermal/dermal layers restore their typical normal cellular alignment with healthy architecture.

16.
Int J Gen Med ; 14: 3225-3233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267540

RESUMO

OBJECTIVE: Metformin (MET), an oral biguanide agent, can improve insulin resistance and decrease hepatic glucose production, leading to a reduction in blood-sugar levels. The objective of the present study was to develop and validate simple and rapid LC-MS/MS method for analysis of MET in dried blood spot (DBS) sample for patient monitoring studies purposes (drug adherence). METHODS: The chromatographic separation was achieved with Waters HSS-T3 column using gradient elution of mobile phases of two solvents: 1) solvent A, consisted of 10mM ammonium formate, 0.2% formic acid 1%; and 2) acetonitrile solvent B, contained 0.2% formic acid in acetonitrile at a flow rate of 0.2 mL/min. The total run time was 3.0 min. The effectiveness of chromatographic conditions was optimized, and afatinib was used as the internal standard. The assay method was validated using USP 26 and the ICH guidelines. RESULTS: The method showed good linearity in the range 8-48 ng/mL for MET with correlation coefficient (r) >0.9907. The intra- and inter­day precision values for MET met the acceptance criteria as per regulatory guidelines. MET was stable during the stability studies at ambient temperature 25 °C, at refrigerator 4 °C, at 10 °C autosampler, freeze/thaw cycles and 30 days storage in a freezer at -30 ± 0.5 °C. CONCLUSION: This method has successfully fulfilled all validation requirements referring to EMA and FDA guidelines, and successfully can be applied for MET adherence study. All the six studied patients were approved to metformin adherence.

17.
Curr Pharm Des ; 27(25): 2904-2914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34139976

RESUMO

Ulcerative colitis (UC) is one of the main subtypes of inflammatory bowel disease. UC has a negative effect on patients' quality of life, and it is an important risk factor for the development of colitis-associated cancer. Patients with UC need to take medications for their entire life because no permanent cure is available. Therefore, approaches that target messenger RNA (mRNA) of proinflammatory cytokines and/or anti-inflammatory cytokines are needed to improve the safety of UC therapy and promote intestinal mucosa recovery. The major challenge facing RNA interference-based therapy is the delivery of RNA molecules to the intracellular space of target cells. Moreover, nonspecific and systemic protein expression inhibition can result in adverse effects and low therapeutic benefit. Thus, it is important to develop an efficient delivery strategy targeting the cytoplasm of target cells to avoid side effects caused by off-target protein expression inhibition. This review focuses on the most recent advances in the targeted nano delivery systems of siRNAs and mRNA that have shown in vivo efficacy.


Assuntos
Colite Ulcerativa , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Humanos , Mucosa Intestinal , Qualidade de Vida , Interferência de RNA , Terapêutica com RNAi
18.
AAPS PharmSciTech ; 22(5): 161, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031791

RESUMO

Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95-9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16-based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.


Assuntos
Atorvastatina/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Administração Oral , Animais , Atorvastatina/sangue , Atorvastatina/química , Disponibilidade Biológica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Técnicas In Vitro , Ratos , Solubilidade , Comprimidos
19.
Int J Nanomedicine ; 16: 2405-2417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814907

RESUMO

PURPOSE: Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS: NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS: The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 µm. CONCLUSION: Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.


Assuntos
Bronquiectasia/tratamento farmacológico , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Administração por Inalação , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Quitosana/química , Ciprofloxacina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Fibrose , Cinética , Lipossomos , Pulmão , Testes de Sensibilidade Microbiana , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
20.
Int J Burns Trauma ; 11(1): 20-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33824781

RESUMO

BACKGROUND: Although there is an emergent increase in the epidemiology of skin cancer in Saudi Arabia, yet knowledge, attitude, and awareness towards skin cancer prevention measures is still poor. Therefore, the present study aimed to assess the knowledge and attitudes and practice towards skin cancer among the Saudi population, as well as, to evaluate the level of awareness relating to exposure to sunlight. METHODS: This cross-sectional survey involved 438 participants who were randomly selected from Riyadh city, Saudi Arabia. A standard questionnaire was used to collect data regarding skin cancer. The questionnaire focused on three main aspects knowledge, attitude, and practice. The skin cancer quality of life impact tool (SCQOLIT) was employed. RESULTS: The present study included 438 participants, aged 18 to 55 years old. The response in the present study was 81.9%. Regarding the causes and effects of skin cancer, 61.2% of the respondents have prior knowledge about it. The positive attitude about skin cancer was exhibited by 68.9%, and only 31.1% showed a negative attitude towards it. CONCLUSION: In conclusion, Knowledge, attitude, and practice towards skin cancer still under the desired level to prevent skin cancer and its related conditions in Saudi Arabia. Greater emphasis should be made through awareness campaigns and available media to raise the knowledge about implications related to prolonged exposure to sunlight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA