Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Public Health ; 16(11): 1837-1847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769584

RESUMO

Infectious diseases present a global challenge, requiring accurate diagnosis, effective treatments, and preventive measures. Artificial intelligence (AI) has emerged as a promising tool for analysing complex molecular data and improving the diagnosis, treatment, and prevention of infectious diseases. Computer-aided detection (CAD) using convolutional neural networks (CNN) has gained prominence for diagnosing tuberculosis (TB) and other infectious diseases such as COVID-19, HIV, and viral pneumonia. The review discusses the challenges and limitations associated with AI in this field and explores various machine-learning models and AI-based approaches. Artificial neural networks (ANN), recurrent neural networks (RNN), support vector machines (SVM), multilayer neural networks (MLNN), CNN, long short-term memory (LSTM), and random forests (RF) are among the models discussed. The review emphasizes the potential of AI to enhance the accuracy and efficiency of diagnosis, treatment, and prevention of infectious diseases, highlighting the need for further research and development in this area.

2.
Genome Med ; 15(1): 54, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475040

RESUMO

BACKGROUND: The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS: Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS: We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS: Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.


Assuntos
COVID-19 , COVID-19/imunologia , Inflamação/imunologia , Humanos , Células HEK293 , SARS-CoV-2/genética , Mutação , Índice de Gravidade de Doença
3.
Biochem Biophys Res Commun ; 666: 61-67, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178506

RESUMO

The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVß3 and α5ß1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVß3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Asparagina , Integrina alfaVbeta3
4.
Microorganisms ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36985244

RESUMO

The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.

5.
Front Epidemiol ; 3: 1180331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455891

RESUMO

Background: The prevalence of fungal infection is increasing globally due to an increase in the immunocompromised and aging population. We investigated epidemiological changes in fungemia in one of the major centers in Medina over seven years period with 87,447 admissions. Methods: Retrospective search of records for causative agents of fungemia in inpatients at King Fahad Hospital (KFH) in 2013-2019. Fungal-positive blood cultures, demographic, and treatment data were extracted. Results: A total of 331 fungemia episodes proven by blood culture were identified in 46 patients. The annual prevalence of fungemia increased from 0.072 in 2013 to 1.546 patients per 1,000 in 2019. The mean age of fungemia episodes was 56 years, and 62% of episodes occurred in females. Samples from central blood incubated aerobically yielded the highest fungemia rate, accounting for 55% (n = 182). Among yeast species, Candida parapsilosis was responsible for the highest number of episodes 37% (n = 122), followed by Candida glabrata (32%; n = 107), Candid albicans (29%; n = 94), and Cryptococcus neoformans (1%; n = 4). Among molds, Lichtheimia (Absidia) species was the most common (1%; n = 3). Yeast-like fungi Trichosporion mucoides accounted for (0.003% n = 1). The use of antifungal treatment has increased (96%) over the years (2013-2019). An increase in resistance rate of 2% was found in C. albicans and C. glabrata. The most prevalent comorbidity was renal disease (24.2%). Conclusions: C. parapsilosis was the leading cause of fungemia. The association of renal disease with increased candidemia was alarming. This study is a fundamental resource to establish management policies for fungal infection in the region.

6.
Infect Drug Resist ; 15: 7401-7411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540101

RESUMO

Background: Most patients admitted to intensive care units (ICUs) with severe Corona Virus Disease 2019 (COVID-19) pneumonia receive antibacterial antibiotics with little evidence of bacterial infections. Objective: This study was designed to review the profiles of patients with severe COVID-19 pneumonia requiring intensive care, the rate of bacterial coinfection, the antibiotics used, and their relation to patient outcomes (death or recovery). Methods: This was a retrospective study that reviewed the medical records of all patients with confirmed COVID-19 (n = 120) severe pneumonia admitted directly from the emergency room to the intensive care unit, at a public hospital during the period from May 2020 to April 2021. The data collected included patients' demographic and laboratory data, comorbidities, antibiotic treatment, and their outcome. Descriptive statistics, bivariate inferential analysis tests (chi-square and unpaired T-Tests) and multivariable binary logistic regression were performed. Results: The mean age of the patients was 56.8 ± 16.5 years old, and among them, 74 (62.7%) were males. Of the included patients, 92 (77.0%) had comorbidities, 76 (63.3%) required mechanical ventilation and 30 (25%) died. All patients received empirical antibiotics for suspected bacterial coinfection. The most common antibiotics used were azithromycin (n = 97, 8%) and imipenem (n = 83, 9%). Ninety patients (75%) were on two empirical antibiotics. Early positive cultures for pathogens were found only in four patients (3.3%), whereas 36 (30%) patients had positive cultures 5-10 days after admission. The most frequently isolated pathogens were Acinetobacter baumannii (n = 16) and coagulase-negative Staphylococci (n = 14). In bivariate analysis empirical treatment with azithromycin resulted in a significantly lower mortality rate (p = 0.023), meanwhile mechanical ventilation, days of stay in intensive care unit, morbidities (e.g., lung disease), linezolid and, vancomycin use associated with mortality (p< 0.05). The adjusted logistic regression, controlling for age and gender, revealed that azithromycin antibiotic was more likely protective from mortality (OR= 0.22, 95%CI 0.06-0.85, p=0.028. However, patients with lung diseases and under mechanical ventilation were 35.21 and 19.57 more likely to die (95%CI =2.84-436.70, p=0.006; 95%CI=2.66-143.85, p=0.003, respectively). Conclusion: Bacterial coinfection with severe COVID-19 pneumonia requiring intensive care was unlikely. The benefit of Azithromycin over other antibiotics could be attributed to its anti-inflammatory properties rather than its antibacterial effect.

7.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014572

RESUMO

Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains a threat to mankind, with over a billion of deaths in the last two centuries. Recent advancements in science have contributed to an understanding of Mtb pathogenesis and developed effective control tools, including effective drugs to control the global pandemic. However, the emergence of drug resistant Mtb strains has seriously affected the TB eradication program around the world. There is, therefore, an urgent need to develop new drugs for TB treatment, which has grown researchers' interest in small molecule-based drug designing and development. The small molecules-based treatments hold significant potential to overcome drug resistance and even provide opportunities for multimodal therapy. In this context, various natural and synthetic flavonoids were reported for the effective treatment of TB. In this review, we have summarized the recent advancement in the understanding of Mtb pathogenesis and the importance of both natural and synthetic flavonoids against Mtb infection studied using in vitro and in silico methods. We have also included flavonoids that are able to inhibit the growth of non-tubercular mycobacterial organisms. Hence, understanding the therapeutic properties of flavonoids can be useful for the future treatment of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
8.
Pathogens ; 11(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015044

RESUMO

Monkeypox is a rare disease but is increasing in incidence in different countries since the first case was diagnosed in the UK by the United Kingdom (UK) Health Security Agency on 6 May 2022. As of 9 August, almost 32,000 cases have been identified in 89 countries. In endemic areas, the monkeypox virus (MPXV) is commonly transmitted through zoonosis, while in non-endemic regions, it is spread through human-to-human transmission. Symptoms can include flu-like symptoms, rash, or sores on the hands, feet, genitalia, or anus. In addition, people who did not take the smallpox vaccine were more likely to be infected than others. The exact pathogenesis and mechanisms are still unclear; however, most identified cases are reported in men who have sex with other men (MSM). According to the CDC, transmission can happen with any sexual or non-sexual contact with the infected person. However, a recent pooled meta-analysis reported that sexual contact is involved in more than 91% of cases. Moreover, it is the first time that semen analysis for many patients has shown positive monkeypox virus DNA. Therefore, in this review, we will describe transmission methods for MPXV while focusing mainly on potential sexual transmission and associated sexually transmitted infections. We will also highlight the preventive measures that can limit the spread of the diseases in this regard.

9.
Med ; 2(6): 689-700.e4, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33821249

RESUMO

BACKGROUND: Strategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner. METHODS: We describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes, termed nanopore sequencing of isothermal rapid viral amplification for near real-time analysis (NIRVANA). It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. FINDINGS: NIRVANA showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples with a detection limit of 20 viral RNA copies per µL of extracted nucleic acid. It also detected the influenza A co-infection in two samples. The variant analysis results of SARS-CoV-2-positive samples mirror the epidemiology of coronavirus disease 2019 (COVID-19). Additionally, NIRVANA could simultaneously detect SARS-CoV-2 and pepper mild mottle virus (PMMoV) (an omnipresent virus and water-quality indicator) in municipal wastewater samples. CONCLUSIONS: NIRVANA provides high-confidence detection of both SARS-CoV-2 and other respiratory viruses and mutation surveillance of SARS-CoV-2 on the fly. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses. FUNDING: M.L. is supported by KAUST Office of Sponsored Research (BAS/1/1080-01). This work is supported by KAUST Competitive Research Grant (URF/1/3412-01-01; M.L. and J.C.I.B.) and Universidad Catolica San Antonio de Murcia (J.C.I.B.). A.M.H. is supported by Saudi Ministry of Education (project 436).


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Humanos , Influenza Humana/epidemiologia , Mutação/genética , Pandemias , SARS-CoV-2/genética
10.
Glob Chall ; 5(4): 2000068, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33786197

RESUMO

Molecular diagnosis and surveillance of pathogens such as SARS-CoV-2 depend on nucleic acid isolation. Pandemics at the scale of COVID-19 can cause a global shortage of proprietary commercial reagents and BSL-2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open-source method, magnetic-nanoparticle-aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real-world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol-chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID-19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS-CoV-2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field-deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.

11.
ACS Omega ; 6(11): 7374-7386, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778250

RESUMO

One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method for COVID-19 diagnostics. Notwithstanding the facts that one-step qRT-PCR is well suited for the diagnosis of COVID-19 and that there are many commercially available one-step qRT-PCR kits in the market, their high cost and unavailability due to airport closures and shipment restriction became a major bottleneck that had driven the desire to produce the key components of such kits locally. Here, we provide a simple, economical, and powerful one-step qRT-PCR kit based on patent-free, specifically tailored versions of Moloney murine leukemia virus reverse transcriptase and Thermus aquaticus DNA polymerase and termed R3T (Rapid Research Response Team) one-step qRT-PCR. We also demonstrate the robustness of our enzyme production strategies and provide the optimal reaction conditions for their efficient augmentation in a one-step approach. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity to that of the Invitrogen SuperScript III Platinum One-step qRT-PCR and TaqPath one-step RT-qPCR kits. Overall, our kit has shown robust performance in both laboratory settings and the Saudi Ministry of Health-approved testing facility.

12.
Viruses ; 12(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291713

RESUMO

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunidade Humoral , Imunoglobulina G/sangue , Anticorpos Neutralizantes/sangue , COVID-19/diagnóstico , Hospitalização , Humanos , Imunoglobulina M/sangue , Cinética , Estudos Longitudinais , Testes de Neutralização , Proteínas do Nucleocapsídeo/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Pathogens ; 9(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352788

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally. Although several rapid commercial serological assays have been developed, little is known about their performance and accuracy in detecting SARS-CoV-2-specific antibodies in COVID-19 patient samples. Here, we have evaluated the performance of seven commercially available rapid lateral flow immunoassays (LFIA) obtained from different manufacturers, and compared them to in-house developed and validated ELISA assays for the detection of SARS-CoV-2-specific IgM and IgG antibodies in RT-PCR-confirmed COVID-19 patients. While all evaluated LFIA assays showed high specificity, our data showed a significant variation in sensitivity of these assays, which ranged from 0% to 54% for samples collected early during infection (3-7 days post symptoms onset) and from 54% to 88% for samples collected at later time points during infection (8-27 days post symptoms onset). Therefore, we recommend prior evaluation and validation of these assays before being routinely used to detect IgM and IgG in COVID-19 patients. Moreover, our findings suggest the use of LFIA assays in combination with other standard methods, and not as an alternative.

14.
Sci Rep ; 10(1): 16561, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024213

RESUMO

As the Coronavirus Disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses (CoVs). The developed SARS-CoV-2 S1 subunit of the spike glycoprotein and nucleocapsid (N)-based ELISAs not only showed high specificity and sensitivity but also did not show any cross-reactivity with other CoVs. We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo/imunologia , Pneumonia Viral/diagnóstico , Soroconversão , Testes Sorológicos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Betacoronavirus/genética , COVID-19 , Estudos de Coortes , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade , Adulto Jovem
15.
Virus Res ; 288: 198129, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822689

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.


Assuntos
Betacoronavirus/genética , Sistemas CRISPR-Cas , Técnicas de Laboratório Clínico/métodos , Colorimetria/métodos , Infecções por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/diagnóstico , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/instrumentação , Colorimetria/instrumentação , Infecções por Coronavirus/virologia , Endodesoxirribonucleases/química , Humanos , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Pandemias , Pneumonia Viral/virologia , Sistemas Automatizados de Assistência Junto ao Leito , Reologia , SARS-CoV-2 , Sensibilidade e Especificidade
16.
J Taibah Univ Med Sci ; 15(2): 136-141, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32368210

RESUMO

OBJECTIVE: The study evaluated the adherence to the guidelines for surgical antimicrobial prophylaxis in a Saudi tertiary care hospital. METHODS: The medical records of 707 patients from the surgical units over a selected 3-month period were selected. The data were reviewed and statistically analysed. RESULTS: Of the 707 respondents, 51.2% were women and most were older than 50 years. The most common surgical procedures involved orthopaedics (28.3%), followed by vascular surgery (15.1%). One hundred and thirty-eight (19.5%) patients received antibiotics according to the guidelines for surgical prophylaxis. More than half of the patients (399/56.4%) received antibiotics for more than 24 h and 129 (18.2%) received antibiotics for less than 24 h. Single dose antibiotic therapy was used in 179 (25.3%) patients. Two hundred and ninety-seven (42%) patients underwent clean surgery, 284 (40%) clean-contaminated and 128 (18%) contaminated surgery. A significant difference was evident between the antibiotics administered according to the recommended guidelines and the duration of antibiotic therapy (p = 0.001), duration (p = 0.001) and the type of surgical procedure (p = 0.00). CONCLUSION: The findings of this study suggest that healthcare professionals do not strictly adhere to the guidelines for surgical antibiotic prophylaxis. Physicians are therefore encouraged to follow the recommendations appropriately and to regularly implement surgical antimicrobial prophylaxis for patient safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA