Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 464: 132903, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979422

RESUMO

Cadmium (Cd) and antibiotic's tendency to accumulate in edible plant parts and fertile land is a worldwide issue. The combined effect of antibiotics and heavy metals on crops was analyzed, but not mitigation of their toxicity. This study investigated the potential of zinc oxide nanoparticles (ZnO NPs) to alleviate the SDZ and Cd toxicity (alone/combined) to promote spinach growth. Results revealed that the ZnO 200 mg L-1 spray decreased the malondialdehyde (MDA) 14%, hydrogen peroxide (H2O2) 13%, and electrolyte leakage (EL) 7%, and increased the superoxide dismutase (SOD) 8%, peroxidase (POD) 25%, catalase (CAT) 39% and ascorbate peroxidase (APX) 12% in spinach leaves under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1 spray. Likewise, ZnO NPs 200 mg L-1 spray enhanced the zinc (Zn) 97%, iron (Fe) 86%, magnesium (Mg) 35%, manganese (Mn) 8%, and potassium (K) 23% in shoots under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1 spray. Further, ZnO 200 mg L-1 spray reduced Cd uptake in roots by 9% and shoots 15% under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1. Overall, ZnO NPs alleviated the SDZ and Cd toxicity and enhanced spinach growth in all treatments.


Assuntos
Poluentes do Solo , Óxido de Zinco , Zinco/análise , Cádmio/análise , Óxido de Zinco/toxicidade , Spinacia oleracea , Sulfadiazina , Peróxido de Hidrogênio/farmacologia , Superóxido Dismutase , Antioxidantes/farmacologia , Raízes de Plantas , Poluentes do Solo/análise
2.
Chemosphere ; 345: 140439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838027

RESUMO

Heavy metals, especially cadmium (Cd), cause severe toxicity symptoms in crop plants. Applying nanoparticles (NPs) as nano-fertilizers is a novel approach to mitigating plants' Cd stress. However, knowledge about the combinational use of silicon (Si) and titanium dioxide (TiO2) NPs to mitigate Cd stress, especially in rice, must be highlighted. TiO2-NPs (15 mg L-1) and Si-NPs (2.5 mM) were applied alone and in combination to rice plants grown without (control; no Cd stress) and with (100 µM) Cd concentration. Results revealed that compared to the control plants, root length, shoot length, shoot fresh weight, and root dry weight of rice seedlings were significantly decreased by 25.43%, 26.64%, 34.13%, and 29.87% under Cd exposure. However, the synergistic effect of TiO2- and Si-NPs increased rice plants' shoot length, root length, root dry weight, and shoot fresh weight by 24.62%, 29.81%, 36.16%, and 33.07%, respectively, under the Cd-toxicity. The concentration of malondialdehyde (MDA) and H2O2 were amplified due to Cd stress, which leads to damage to the subcellular structures. Si and TiO2-NPs co-application improved the anti-oxidative enzymatic activities (catalase, peroxidase, superoxide dismutase) and an elevated concentration of non-enzymatic glutathione in Cd-exposed rice. The Cd accumulation was condensed by 21.37% and 19.7% in the shoot, while 48.31% and 45.65% in root tissues under Si-NPs + Cd and TiO2-NPs + Cd treatments compared to Cd-alone treated seedlings, respectively. The expression patterns of metal transporters, such as OsNramp1 and OsHMA3, were the highest when rice plants were cultivated under Cd stress and significantly reduced when treated with sole and combined Si- and TiO2-NPs treatments. In conclusion, combining Si- and TiO2-NPs significantly improved the antioxidant enzymatic activities, chlorophyll contents, biomass production, and reduced cellular damage. Despite limitations, our findings guide future research, addressing risks, optimizing concentrations, and assessing long-term effects that can balance agricultural progress with environmental sustainability.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Silício/farmacologia , Silício/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Nanopartículas/toxicidade , Antioxidantes/metabolismo , Plântula/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
3.
Antibiotics (Basel) ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760712

RESUMO

The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.

4.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28808105

RESUMO

Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction-oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Transdução de Sinais , Antimicina A/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efeitos dos fármacos , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Citosol/efeitos dos fármacos , Proteínas de Fluorescência Verde/química , Lincomicina/farmacologia , Oxirredução , Fotossíntese , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Piridazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA