Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Comp Neurol ; 532(7): e25647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961708

RESUMO

Data mining was performed at the databases of the Allen Institute for Brain Science (RRID:SCR_017001) searching for genes expressed selectively throughout the adult mouse mesocortex (transitional cortex ring predicted within the concentric ring theory of mammalian cortical structure, in contrast with central isocortex [ICx] and peripheral allocortex). We aimed to explore a shared molecular profile selective of all or most mesocortex areas. This approach checks and corroborates the precision of other previous definitory criteria, such as poor myelination and high kainate receptor level. Another aim was to examine which cortical areas properly belong to mesocortex. A total of 34 positive adult selective marker genes of mesocortex were identified, jointly with 12 negative selective markers, making a total of 46 markers. All of them identify the same set of cortical areas surrounding the molecularly different ICx as well as excluding adjacent allocortex. Four representative mesocortex markers-Crym, Lypd1, Cdh13, and Smoc2-are amply illustrated, jointly with complementary material including myelin basic protein, to check myelination, and Rorb, to check layer 4 presence. The retrosplenial (ReSp) area, long held to be mesocortical, does not share any of the 46 markers of mesocortex and instead expresses Nr4a2 and Tshz2, selective parahippocampal allocortex markers. Moreover, it is not hypomyelinic and lacks a Rorb-positive layer 4, aspects generally present in mesocortex. Exclusion of the ReSp area from the mesocortex ring reveals the latter to be closed at this locus instead by two adjacent areas previously thought to be associative visual ICx (reidentified here molecularly as postsplenial and parasplenial mesocortex areas). The concepts of ICx, mesocortex, and parahippocampal allocortex are thus subtly modified by substantial molecular evidence.


Assuntos
Córtex Cerebral , Animais , Camundongos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Córtex Cerebral/química , Masculino , Camundongos Endogâmicos C57BL
2.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38815068

RESUMO

The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.


Assuntos
Núcleo Arqueado do Hipotálamo , Privação de Alimentos , Neurônios GABAérgicos , Grelina , Glutamato Descarboxilase , Hiperfagia , Receptores de Grelina , Animais , Masculino , Camundongos , Neurônios GABAérgicos/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Hiperfagia/metabolismo , Grelina/metabolismo , Grelina/farmacologia , Núcleo Arqueado do Hipotálamo/metabolismo , Privação de Alimentos/fisiologia , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Camundongos Transgênicos , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genética , Camundongos Endogâmicos C57BL
3.
Front Mol Neurosci ; 15: 1072475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523603

RESUMO

Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.

4.
Front Cell Dev Biol ; 9: 676121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095148

RESUMO

The tuberal hypothalamic ventral premamillary nucleus (VPM) described in mammals links olfactory and metabolic cues with mating behavior and is involved in the onset of puberty. We offer here descriptive and experimental evidence on a migratory phase in the development of this structure in mice at E12.5-E13.5. Its cells originate at the retromamillary area (RM) and then migrate tangentially rostralward, eschewing the mamillary body, and crossing the molecularly distinct perimamillary band, until they reach a definitive relatively superficial ventral tuberal location. Corroborating recent transcriptomic studies reporting a variety of adult glutamatergic cell types in the VPM, and different projections in the adult, we found that part of this population heterogeneity emerges already early in development, during tangential migration, in the form of differential gene expression properties of at least 2-3 mixed populations possibly derived from subtly different parts of the RM. These partly distribute differentially in the core and shell parts of the final VPM. Since there is a neighboring acroterminal source of Fgf8, and Fgfr2 is expressed at the early RM, we evaluated a possible influence of Fgf8 signal on VPM development using hypomorphic Fgf8neo/null embryos. These results suggested a trophic role of Fgf8 on RM and all cells migrating tangentially out of this area (VPM and the subthalamic nucleus), leading in hypomorphs to reduced cellularity after E15.5 without alteration of the migrations proper.

5.
Front Neuroanat ; 15: 643320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664652

RESUMO

The interpeduncular nucleus (IPN) is a highly conserved limbic structure in the vertebrate brain, located in the isthmus and rhombomere 1. It is formed by various populations that migrate from different sites to the distinct domains within the IPN: the prodromal, rostral interpeduncular, and caudal interpeduncular nuclei. The aim here was to identify genes that are differentially expressed across these domains, characterizing their putative functional roles and interactions. To this end, we screened the 2,038 genes in the Allen Developing Mouse Brain Atlas database expressed at E18.5 and we identified 135 genes expressed within the IPN. The functional analysis of these genes highlighted an overrepresentation of gene families related to neuron development, cell morphogenesis and axon guidance. The interactome analysis within each IPN domain yielded specific networks that mainly involve members of the ephrin/Eph and Cadherin families, transcription factors and molecules related to synaptic neurotransmission. These results bring to light specific mechanisms that might participate in the formation, molecular regionalization, axon guidance and connectivity of the different IPN domains. This genoarchitectonic model of the IPN enables data on gene expression and interactions to be integrated and interpreted, providing a basis for the further study of the connectivity and function of this poorly understood nuclear complex under both normal and pathological conditions.

6.
Brain Struct Funct ; 226(3): 759-785, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33544184

RESUMO

The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.


Assuntos
Hipotálamo/embriologia , Neurônios/citologia , Codorniz/embriologia , Telencéfalo/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Embrião de Galinha , Galinhas , Diencéfalo/embriologia
7.
Front Cell Dev Biol ; 8: 588851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195252

RESUMO

The interpeduncular nucleus (IPN) is a hindbrain structure formed by three main subdivisions, the prodromal (Pro) domain located at the isthmus (Ist), and the rostral and caudal interpeduncular domains (IPR, IPC) within rhombomere 1 (r1). Various cell populations can be detected in the IPN through the expression of the Nkx6.1, Otp, Otx2, Pax7, and/or Irx2 transcription factors. These cell populations follow independent dorsoventral tangential and radial migratory routes targeting the ventral paramedian region of Ist and r1. Here we set out to examine the influence of the Netrin-1/DCC pathway on these migrations, since it is known to regulate other processes of neuronal migration in the brain. To this end, we analyzed IPN development in late gestational wild-type and DCC-/- mice, using mainly in situ hybridization (ISH) to identify the cells expressing each of the aforementioned genes. We found that the migration of Nkx6.1 + and Irx2 + cells into the Pro domain was strongly disrupted by the loss of DCC, as occurred with the migration of Pax7 +, Irx2 +, and Otp + cells that would normally form the IPR. In addition, there was mild impairment of the migration of the Pax7 + and Otx2 + cells that form the IPC. These results demonstrate that the Netrin-1/DCC signaling pathway is involved in the migration of most of the IPN populations, mainly affecting those of the Pro and IPR domains of this nucleus. There are psychiatric disorders that involve the medial habenula (mHb)-IPN system, so that this experimental model could provide a basis to study their neurodevelopmental etiology.

8.
Front Behav Neurosci ; 14: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523516

RESUMO

In humans, anxiety and cognitive processes are age, gender, and time of day dependent. The purpose of the present study was to assess whether the time of day and sex have an influence on anxiety and emotional memory in adult mice. Light-dark and passive avoidance (PA) tests were performed at the beginning and at the end of the light cycle, defined as Zeitgeber time (ZT) ZT0-2.5 and ZT9.5-12, respectively. A baseline difference in anxiety was not found, but on the 24 h retention trial of the PA test, females presented longer latencies to enter into the dark compartment at the ZT0-2.5 time point of the day. The data from the second test day (PA reversal trial) indicated that some animals associated the dark compartment with an aversive stimulus (shock), while others associated the aversive stimulus with crossing from one compartment to another. At the ZT9.5-12, female mice mainly related the aversive stimulus to transferring from one compartment to another, while male mice associated darkness with the aversive stimulus. There was a negative correlation between the frequency of light-dark transitions in the light-dark test and the PA latency on the 24 h retention trial in males tested at ZT0-2.5. The PA latency on the reversal and 24 h retention trials negatively correlated with a risk assessment behavior in male mice tested on ZT0-2.5 and ZT9.5-12, respectively. In conclusion, our data reveal that the impact of motor activity and risk assessment behavior on PA memory formation and applied behavioral strategies are time of day and sex dependent.

9.
Front Physiol ; 11: 410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499715

RESUMO

It has been demonstrated that physical activity contributes to a healthier life. However, there is a knowledge gap regarding the neural mechanisms producing these effects. One of the keystones to deal with this problem is to use training programs with equal loads of physical activity. However, irregular motor and stress responses have been found in murine exercise models. Habituation to forced exercise facilitates a complete response to a training program in all rodents, reaching the same load of physical activity among animals. Here, it was evaluated if glucose and lactate - which are stress biomarkers - are increased during the habituation to exercise. Sprague-Dawley rats received an 8-days habituation protocol with progressive increments of time and speed of running. Then, experimental and control (non-habituated) rats were subjected to an incremental test. Blood samples were obtained to determine plasmatic glucose and lactate levels before, immediately after and 30 min after each session of training. Crh and Avp mRNA expression was determined by two-step qPCR. Our results revealed that glucose and lactate levels are not increased during the habituation period and tend to decrease toward the end of the protocol. Also, Crh and Avp were not chronically activated by the habituation program. Lactate and glucose, determined after the incremental test, were higher in control rats without previous contact with the wheel, compared with habituated and wheel control rats. These results suggest that the implementation of an adaptive phase prior to forced exercise programs might avoid non-specific stress responses.

10.
Front Pharmacol ; 11: 562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431612

RESUMO

Verapamil is a phenylalkylamine class calcium channel blocker that for half a century has been used for the treatment of cardiovascular diseases. Nowadays, verapamil is also considered as a drug option for the treatment of several neurological and psychiatric disorders, such as cluster headache, bipolar disorders, epilepsy, and neurodegenerative diseases. Here, we review insights into the potential preventive and therapeutic role of verapamil on Alzheimer's disease (AD) based on limited experimental and clinical data. Pharmacological studies have shown that verapamil has a wide therapeutic spectrum, including antihypertensive, anti-inflammatory, and antioxidative effects, regulation of the blood-brain barrier function, due to its effect on P-glycoprotein, as well as adjustment of cellular calcium homeostasis, which may result in the delay of AD onset or ameliorate the symptoms of patients. However, the majority of the AD individuals are on polypharmacotherapy, and the interactions between verapamil and other drugs need to be considered. Therefore, for an appropriate and successful AD treatment, a personalized approach is more than necessary. A well-known narrow pharmacological window of verapamil efficacy may hinder this approach. It is therefore important to note that the verapamil efficacy may be conditioned by different factors. The onset, grade, and brain distribution of AD pathological hallmarks, the time-sequential appearances of AD-related cognitive and behavioral dysfunction, the chronobiologic and gender impact on calcium homeostasis and AD pathogenesis may somehow be influencing that success. In the future, such insights will be crucial for testing the validity of verapamil treatment on animal models of AD and clinical approaches.

11.
Brain Struct Funct ; 225(2): 481-510, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901976

RESUMO

The prethalamic eminence (PThE) is the most dorsal subdomain of the prethalamus, which corresponds to prosomere 3 (p3) in the prosomeric model for vertebrate forebrain development. In mammalian and avian embryos, the PThE can be delimited from other prethalamic areas by its lack of Dlx gene expression, as well as by its expression of glutamatergic-related genes such as Pax6, Tbr2 and Tbr1. Several studies in mouse embryos postulate the PThE as a source of migratory neurons that populate given telencephalic centers. Concerning the avian PThE, it is visible at early embryonic stages as a compact primordium, but its morphology becomes cryptic at perinatal stages, so that its developmental course and fate are largely unknown. In this report, we characterize in detail the ontogeny of the chicken PThE from 5 to 15 days of development, according to morphological criteria, and using Tbr1 as a molecular marker for this structure and its migratory cells. We show that initially the PThE contacts rostrally the medial pallium, the pallial amygdala and the paraventricular hypothalamic alar domain. Approximately from embryonic day 6 onwards, the PThE becomes progressively reduced in size and cell content due to massive tangential migration of many of its neuronal derivatives towards nearby subpallial and hypothalamic regions. Our analysis supports that these migratory neurons from the avian PThE target telencephalic centers such as the commissural septal nuclei, as previously described in mammals, but also the diagonal band and preoptic areas, and hypothalamic structures in the paraventricular hypothalamic area.


Assuntos
Proteínas Aviárias/metabolismo , Movimento Celular , Embrião de Galinha/embriologia , Diencéfalo/crescimento & desenvolvimento , Neurônios/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Embrião de Galinha/metabolismo , Diencéfalo/metabolismo , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo
12.
J Comp Neurol ; 527(10): 1731-1752, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737959

RESUMO

Models aiming to explain causally the evolutionary or ontogenetic emergence of the pallial isocortex and its regional/areal heterogeneity in mammals use simple or complex assumptions about the pallial structure present in basal mammals and nonmammals. The question arises: how complex is the pattern that needs to be accounted for in causal models? This topic is also paramount for comparative purposes, since some topological relationships may be explained as being ancestral, rather than newly emerged. The mouse pallium is apt to be reexamined in this context, due to the breadth of available molecular markers and correlative experimental patterning results. We center the present essay on a recapitulative glance at the classic theory of concentric mammalian allo-, meso-, and neocortex domains. In its simplest terms, this theory postulates a central neocortical island (6 layers) separated by a surrounding mesocortical ring (4-5 layers) from a peripheral allocortical ring (3 layers). These territories show additional partition into regional or areal subdivisions. There are also borderline amygdalar, claustral, and septal areas of the pallium, nuclear in structure. There has been little effort so far to contemplate the full concentric ring model in current "cortex patterning" models. In this essay, we recapitulate the ring idea in mammals (mouse) and consider a potential causal patterning scenario using topologic models. Finally, we briefly explore how far this theory may apply to pallium models proposed recently for sauropsids.


Assuntos
Evolução Biológica , Córtex Cerebral/anatomia & histologia , Animais , Padronização Corporal , Humanos
13.
Brain Struct Funct ; 218(5): 1229-77, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23052546

RESUMO

The raphe nuclei represent the origin of central serotonergic projections. The literature distinguishes seven nuclei grouped into rostral and caudal clusters relative to the pons. The boundaries of these nuclei have not been defined precisely enough, particularly with regard to developmental units, notably hindbrain rhombomeres. We hold that a developmental point of view considering rhombomeres may explain observed differences in connectivity and function. There are twelve rhombomeres characterized by particular genetic profiles, and each develops between one and four distinct serotonergic populations. We have studied the distribution of the conventional seven raphe nuclei among these twelve units. To this aim, we correlated 5-HT-immunoreacted neurons with rhombomeric boundary landmarks in sagittal mouse brain sections at different developmental stages. Furthermore, we performed a partial genoarchitectonic analysis of the developing raphe nuclei, mapping all known serotonergic differentiation markers, and compared these results, jointly with others found in the literature, with our map of serotonin-containing populations, in order to examine regional variations in correspondence. Examples of regionally selective gene patterns were identified. As a result, we produced a rhombomeric classification of some 45 serotonergic populations, and suggested a corresponding modified terminology. Only a minor rostral part of the dorsal raphe nucleus lies in the midbrain. Some serotonergic neurons were found in rhombomere 4, contrary to the conventional assumption that it lacks such neurons. We expect that our reclassification of raphe nuclei may be useful for causal analysis of their differential molecular specification, as well as for studies of differential connectivity and function.


Assuntos
Núcleos da Rafe/citologia , Núcleos da Rafe/crescimento & desenvolvimento , Rombencéfalo/citologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , Animais , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neurônios Serotoninérgicos/classificação , Terminologia como Assunto
14.
Eur J Pharmacol ; 691(1-3): 77-85, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796677

RESUMO

Exposure to organophosphorus compounds, either pesticides or chemical warfare agents such as soman or sarin, represents a major health problem. Organophosphorus poisoning may induce seizures, status epilepticus and even brain lesions if untreated. Ketamine, an antagonist of glutamatergic receptors, was recently proved to be effective in combination with atropine sulfate as an anticonvulsant and neuroprotectant in mice and guinea pigs exposed to soman. Organophosphorus exposure may also occur in conditions of contemporary heat exposure. Since both MK-801, a more potent glutamatergic antagonist than ketamine, and atropine sulfate are detrimental for thermoregulation, we evaluated the pathophysiological consequences of ketamine/atropine combinations in a hot environment. Male wistar rats were exposed to 38°C ambient temperature and treated with atropine sulfate and/or ketamine (anesthetic and subanesthetic doses). The abdominal temperature and spontaneous locomotor activity were continuously monitored using telemetry. At the end of heat exposure, blood chemistry and the mRNA expression of some specific genes in the brain were assessed. Unlike MK-801, ketamine did not induce any deleterious effect on thermoregulation in rats. Conversely, atropine sulfate led to heatstroke and depressed the heat-induced blood corticosterone increase. Furthermore, it induced a dramatic increase in Hsp70 and c-Fos mRNA levels and a decrease in IκBα mRNA expression, both suggesting brain aggression. When combined with the anesthetic dose of ketamine, some of the atropine-induced metabolic disturbances were modified. In conclusion, ketamine can be used in hot environment and may even limit some of the biological alterations induced by atropine sulfate in these conditions.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Temperatura Alta , Ketamina/efeitos adversos , Animais , Atropina/farmacologia , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
15.
Eur J Pharmacol ; 682(1-3): 92-8, 2012 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-22387859

RESUMO

Metyrapone is a cytochrome P(450) inhibitor that protects against ischemia- and excitotoxicity-induced brain damages in rodents. This study examines whether metyrapone would act on energy metabolism in a manner congruent with its neuroprotective effect. In a first investigation, the rats instrumented with telemetric devices measuring abdominal temperature, received i.p. injection of either metyrapone or saline. One hour after injection, their blood and hippocampus were sampled. Hippocampus metabolite concentrations were measured using (1)H high-resolution magic angle spinning-magnetic resonance spectroscopy ((1)H HRMAS-MRS). The hippocampus levels in phosphorylated mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) were measured by Western Blot analysis and those of c-fos and HSP70-2 mRNA were quantified by RT-PCR. In a second investigation, the rats received the same treatment and were sacrificed 1h after. The functioning of mitochondria was immediately studied on their whole brain. Metyrapone provoked a slight hypothermia which was correlated to the increase in blood glucose concentration. Metyrapone also increased blood lactate concentrations without modifying hippocampus lactate content. In the hippocampus, metyrapone decreased γ-aminobutyric acid (GABA) and glutamate levels but increased glutamine and N-acetyl-aspartate contents (NAA). Phosphorylated mTOR and AMPK and the c-fos and HSP70-2 mRNA levels were similar between treatment groups. Metyrapone did not modify blood corticosterone levels. Mitochondrial oxygen consumption was similar in both groups whatever the substrate used. These metabolic modifications, which take place without modifying blood glucocorticoid levels, are consistent with the neuroprotective properties of metyrapone as demonstrated in animal models.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metirapona/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/citologia , Proteínas de Choque Térmico HSP70/genética , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos
16.
J Inherit Metab Dis ; 33(6): 803-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20852934

RESUMO

Although patients with low cerebrospinal fluid (CSF) serotonin metabolite levels have been reported, inborn errors of the rate-limiting enzyme of serotonin synthesis (tryptophan hydroxylase, TPH) have not been described so far. In this study we aimed to evaluate CSF alterations of the serotonin metabolite 5-hydroxyindolacetic acid (5-HIAA) in patients with neurological disorders and to explore a possible TPH deficiency in some of them. A total of 606 patients (286 males, 320 females, mean age 4 years and 6 months, SD 5 years and 7 months) underwent CSF analysis of neurotransmitter metabolites by reverse phase high performance liquid chromatography. Results were compared with values established in a control population. Patients' medical records were reviewed to determine diagnosis and clinical features. A primary defect of biogenic amines was genetically investigated in indicated patients. Low 5-HIAA was seen in 19.3%. Of these, 22.2% showed inborn errors of metabolism (mitochondrial disorders being the most frequent at 10.2% of low 5-HIAA patients) and neurogenetic conditions. Other relatively frequent conditions were pontocerebellar hypoplasia (4.3%), Rett syndrome (4.3%), and among congenital nonetiologically determined conditions, epilepsy including epileptic encephalopathies (26.4%), leukodystrophies (6.8%), and neuropsychiatric disturbances (4.2%). Mutational analysis of the TPH2 gene, performed in five candidate patients, was negative. Although frequency of secondary alteration of 5-HIAA was relatively high in patients with neurological disorders, this finding was more frequently associated with some neurometabolic disorders, epileptic encephalopathies, and neuropsychiatric disturbances. No inborn errors of TPH were found. Due to serotonin's neurotrophic role and to ameliorate symptoms, a supplementary treatment with 5-hydroxytriptophan would seem advisable in these patients.


Assuntos
Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Estudos de Casos e Controles , Criança , Pré-Escolar , Análise Mutacional de DNA , Deficiências do Desenvolvimento/líquido cefalorraquidiano , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Ácido Hidroxi-Indolacético/metabolismo , Lactente , Recém-Nascido , Masculino , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/genética
17.
Behav Brain Res ; 211(1): 41-7, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20214928

RESUMO

Low spontaneous locomotor activity (SA) represents a thermoregulatory behaviour that aims at improving heat tolerance. However, high SA is observed during heat exposure. We hypothesized that high SA could be associated to brain dysfunction. Eighty male Sprague-Dawley rats were heat exposed for 90-min under a continuous assessment of SA and abdominal temperature (T(abd)) using telemetry. The time course analysis showed two SA peaks. The first one was related to exposure to novel environment, the second to heat. The maximal SA level reached in the second peak served to distribute the rats into three groups (LOW, MED and HIGH). In each SA pattern group, heat tolerance was estimated from T(abd) values. At the end of heat exposure, frontal cortex activation was assessed using c-fos, Hsp70 and IkappaBalpha mRNA expressions. The LOW rats exhibited the lowest T(abd), a slight increase in c-fos and Hsp70 mRNA expressions and a robust increase in IkappaBalpha mRNA expression. The HIGH rats exhibited the highest T(abd) and a robust increase in c-fos and Hsp70 mRNA expressions without any change in IkappaBalpha mRNA expression. The c-fos and Hsp70 mRNA expressions were positively correlated to the highest SA levels occurring 45 min before sacrifice, suggesting that high SA and frontal cortex activation are related. In conclusion, high SA is associated to decreased heat tolerance and frontal cortex activation. It may represent a marker of inadequate stress reaction.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Lobo Frontal/metabolismo , Atividade Motora/fisiologia , Tempo de Reação/fisiologia , Adaptação Fisiológica , Análise de Variância , Animais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Estresse Fisiológico
18.
Psychoneuroendocrinology ; 35(9): 1299-310, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20338692

RESUMO

Metyrapone, a cytochrome P(450) inhibitor used to inhibit corticosterone synthesis, triggers biological markers of stress and also reduces stress-induced anxiety-like behaviors. To address these controversial effects, 6 separate investigations were carried out. In a first set of investigations, abdominal temperature (T(abd)), spontaneous locomotor activity (A(S)) and electroencephalogram (EEG) were recorded in freely moving rats treated with either saline or 150 mg kg(-1) metyrapone. An increase in T(abd) and A(S) occurred in saline rats, while, metyrapone rats exhibited an immediate decrease, both variables returning to basal values 5h later. Concomitantly, the EEG spectral power increased in the gamma and beta 2 bands and decreased in the alpha frequency band, and the EMG spectral power increased. This finding suggests that metyrapone depressed stress-induced physiological response while arousing the animal. In a second step, restraint stress was applied 5h after injection. Metyrapone significantly blunted the stress-induced T(abd) and A(S) rise, without affecting the brain c-fos mRNA increase. Corticosterone (5 and 40 mg kg(-1)) injected concomitantly to metyrapone failed to reverse the observed metyrapone-induced effects in T(abd) and A(S). Finasteride (50 mg kg(-1)), which blocks neurosteroid production, was also unable to block these effects. In conclusion, metyrapone acutely reduced stress-induced physiological response in freely behaving rats independently from glucocorticoids and neurosteroids.


Assuntos
Febre/prevenção & controle , Glucocorticoides/fisiologia , Metirapona/farmacologia , Atividade Motora/efeitos dos fármacos , Neurotransmissores/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Algoritmos , Animais , Antimetabólitos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Febre/etiologia , Febre/fisiopatologia , Glucocorticoides/metabolismo , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Neurosci Lett ; 457(1): 41-4, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19429158

RESUMO

Metyrapone is a glucocorticoid synthesis inhibitor known to induce a stress-like biological syndrome, but also to limit stress-related behaviours. Since stress is usually associated to an increased locomotion, the aim of the study was to determine whether metyrapone will increase, decrease or respect locomotion. Forty rats were placed in infrared actimeters to study spontaneous locomotion before and after injecting 150 mg kg(-1) of either metyrapone (n=20) or saline (n=20). Two hours after injection, half of each treatment group animals were tested in an open field to study test-evoked locomotion. Stress-induced analgesia was quantified using plantar test just before blood sampling. Immediately after injection, metyrapone decreased drastically horizontal and vertical locomotion. During the open field test, metyrapone-treated rats remained less active with slower movement execution than saline-treated rats. Metyrapone did not modify plantar test performances but blunted stress-induced corticosterone and ACTH increases. Mechanisms by which metyrapone induced these effects on locomotion are further discussed.


Assuntos
Marcha/efeitos dos fármacos , Marcha/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Metirapona/administração & dosagem , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Animais , Antimetabólitos/administração & dosagem , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley
20.
Biol Trace Elem Res ; 127(2): 132-42, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18800198

RESUMO

Although zinc status is an important parameter in insulin sensitivity, data concerning its implication in noxious burn-induced insulin resistance are scarce. The present study was designed to evaluate the impact of zinc status before burn on the recovery of injury with focus on plasma insulin and glucose levels. The experiment was performed in male adult Wistar rats fed from weaning with a zinc normal diet (80 ppm) or a depleted zinc diet (10 ppm) for 8 weeks and burned to third degree on 20% of their total body surface area. Blood and tissue samples were collected 3, 6, and 24 h after injury in order to study biochemical parameters and the glucose/insulin response in relation with the zinc status. After burn, zinc-depleted rats presented an exacerbated decrease in plasma zinc level. In addition, the burn-induced insulin resistance, leading to protein catabolism, was emphasized, with higher plasma insulin, glucose, and leptin levels in zinc-deficient animals versus normal-fed rats. Our experimental results underlined the interest to early control the zinc status in order to limit the deleterious effects of oxidative stress and insulin resistance in burned patients.


Assuntos
Queimaduras/metabolismo , Resistência à Insulina , Insulina/sangue , Zinco/deficiência , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Corticosterona/sangue , Dieta , Modelos Animais de Doenças , Fêmur , Leptina/sangue , Fígado/metabolismo , Masculino , Músculos/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Zinco/sangue , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA