Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Comput Biol Med ; 182: 109099, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265475

RESUMO

Antibiotics have been a vital component in the fight against microbial diseases for over 75 years, saving countless lives. However, the global rise of multi-drug-resistance (MDR) bacterial infections is pushing us closer to a post-antibiotic era where common infections may once again become lethal. To combat MDR Acinetobacter baumannii, we investigated chiral phthalimides and used molecular docking to identify potential targets. Outer membrane protein A (OmpA) is crucial for A. baumannii resistant to antibiotics, making it a pathogen of great concern due to its high mortality rate and limited treatment options. In this study, we evaluated three distinct compounds against the OmpA protein: FIA (2-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid), FIC (2-(1,3-dioxoindolin-2yl)-4-(methylthio) butanoic acid), and FII (3-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid). Molecular docking results showed that these three compounds exhibited strong interactions with the OmpA protein. Molecular dynamics (MD) simulation analysis further confirmed the stability and binding efficacy of these compounds with OmpA. Their antimicrobial activities were assessed using the agar well diffusion method, revealing that FIA had an optimal zone of inhibition of 24 mm. Additionally, the minimum inhibitory concentrations (MIC) of these compounds were determined, demonstrating their bactericidal properties against A. baumannii, with MICs of 11 µg/µL for FIA, 46 µg/µL for FIC, and 375 µg/µL for FII. In vitro cytotoxicity data indicated that none of the three compounds were hemolytic when exposed to human red blood cells. This finding is particularly significant as it highlights the superior efficacy of FIA against A. baumannii compared to the other compounds. With thorough pharmacokinetic validations, these chiral phthalimides are promising alternative therapeutic options for treating infections caused by A. baumannii, offering new hope in the face of rising antibiotic resistance.

2.
Chem Biodivers ; : e202401654, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266453

RESUMO

This study aims to elucidate the phytochemical diversity and biological activities of J. thurifera essential oil (JTEO) through a comparative analysis of samples from two distinct regions: Tensift-Al Haouz and Azilal, using both in vitro and in silico methods. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed 21 components in the Tensift-Al Haouz JTEO (99.99% of the oil) and 23 components in the Azilal JTEO (99.58% of the oil), with oxygenated monoterpenes being the predominant compounds in both. The biological activities were assessed in vitro. Antioxidant properties, evaluated using DPPH, FRAP, and ABTS assays, showed significant activity in both oils. Antibacterial activity was tested against two strains of Gram-positive and two strains of Gram-negative bacteria, with both oils demonstrating notable bacterial growth inhibition. Enzymatic assays assessed the antidiabetic (α-amylase and α-glucosidase), dermo-protective (tyrosinase and elastase), and neuroprotective (AChE and BChE) activities. Both oils displayed substantial inhibitory effects across all tested activities, with variations attributed to their distinct chemical compositions. In silico analyses of six target enzymes confirmed significant binding affinities of the major compounds. Notably, 2,2'-Thiobis(6-tert-butyl-p-cresol) exhibited strong binding affinities with AChE, BChE, α-amylase, α-glucosidase, tyrosinase, and elastase, with binding energies ranging from -10.0 to -6.2 kcal/mol.

3.
Pol J Microbiol ; 73(3): 329-342, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39268954

RESUMO

Oral bacterial infections are a great health concern worldwide especially in diabetic patients. Emergence of antimicrobial resistance with reference to biofilms in oral cavity is of great concern. We investigated antibiotics combination with proton pump inhibitors against oral clinical isolates. The strains were identified as Staphylococcus epidermidis and Staphylococcus aureus by the 16S rRNA gene sequencing. In molecular docking, ciprofloxacin, levofloxacin, and omeprazole best fit to active pockets of transcriptional regulators 4BXI and 3QP1. None of the proton pump inhibitors were active against S. epidermidis, whereas omeprazole showed significant inhibition (MIC 3.9 µg/ml). Fluoroquinolones were active against both S. epidermidis and S. aureus. In combination analysis, a marked decrease in minimum inhibitory concentration was noticed with omeprazole (MIC 0.12 µg/ml). In antiquorum sensing experiments, a significant inhibitory zone was shown for all fluoroquinolones (14-20 mm), whereas among proton pump inhibitors, only omeprazole (12 ± 0.12 mm) was active against Chromobacterium violaceum. In combination analysis, a moderate increase in antiquorum sensing activity was recorded for ciprofloxacin, ofloxacin, and proton pump inhibitors. Further, significant S. aureus biofilm eradication was recorded using of ciprofloxacin, levofloxacin, and omeprazole combination (78 ± 2.1%). The time-kill kinetic studies indicated a bactericidal effect by ciprofloxacin: levofloxacin: omeprazole combination over 24 hrs. It was concluded that fluoroquinolone combined with omeprazole could be an effective treatment option for eradicating oral bacterial biofilms.


Assuntos
Antibacterianos , Biofilmes , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Inibidores da Bomba de Prótons , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Farmacorresistência Bacteriana , Boca/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia
4.
Cureus ; 16(7): e65047, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39165447

RESUMO

Saudi Arabia guarantees citizens the right to receive medical care and treatment during emergencies or sickness and aging. However, with the consistent increase in expenditure and inability to provide access, the transformation was an unavoidable action. Therefore, this paper aims to address the potential and risks behind the National Transformation Program (NTP) in Saudi Arabia through the lens of the Value Transformation Framework. Multiple research databases (PubMed, Web of Science, UpToDate, Google Scholar, and Summon) were searched between 2016 and 2024. Relevant articles were selected by scanning the title and abstract, yielding 34 references after the screening, exclusion, and inclusion criteria were met. Citation software was used to identify additional sources as analysis proceeded, in accordance with the hermeneutic approach in mapping and classification. The most cited concerns were the sustainability and workforce of the healthcare system. In terms of care delivery, the literature was extensive. In contrast, insufficient studies have been conducted on infrastructure and people. Furthermore, limited information is available on how to assess the transformation, which remains an unaddressed research question. NTP could meet several hurdles. However, through the measurement, assessment phases, and development tracking, success could be achieved.

5.
Chem Biodivers ; : e202401209, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865194

RESUMO

This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26 %), 1,8-cineole (11.82 %), limonene (5.27 %), α-terpineol (4.16 %), and ß-caryophyllene (4.04 %). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50=79.91±2.24 and 62.08±2.78 µg/mL) and limonene (IC50=90.73±3.47 and 68.98±1, 60 µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.

6.
J Appl Biomater Funct Mater ; 22: 22808000241236020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462785

RESUMO

OBJECTIVE: To investigate the Pinus halepensis extracts and determine its healing and antibacterial effects, and to evaluate the treatment of skin burns. METHODS: Aqueous and ethanolic extracts and topical based on Aleppo pine plant extracts were prepared. Thirty male and female Wistar rats were used to study the cutaneous toxicity of extracts from the bark of P. halepensis. The extracts' healing potential for burn wounds were also assessed by evaluating the clinical and macroscopic aspects of the wounds. The antibacterial activity of crude extracts of P. halepensis as well as its wound healing abilities was verified in this investigation. RESULTS: In animals with acute dermal toxicity, there were no signs of treatment-related toxicity or death. The extracts of these plants could be transformed into phytomedicines for the treatment of infected wounds. The results demonstrated that formulated ointments are successful in treating second-degree burns in rats and may be suitable for the short-term therapeutic treatment of second-degree burns. CONCLUSION: This study successfully answered our problem, regarding the efficacy of our extract for treating second-degree burns in rats. Further studies are needed to confirm these results by identifying the molecules responsible for these activities and examining their mechanism of action.


Assuntos
Queimaduras , Pinus , Ratos , Animais , Ratos Wistar , Cicatrização , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia , Pele/lesões
7.
Heliyon ; 10(4): e26657, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420420

RESUMO

Amnesia is a major health problem prevalent in almost every part of the world specifically in old age peoples. Vanillin analogues have played an important role in the field medicines. Some of them have been documented to be promising inhibitors of cholinesterases and could therefore, be used as antidepressant, anti-Alzheimer and as neuroprotective drugs. In this connection, the present study was designed to synthesize new vanillin analogues (SB-1 to SB-6) of varied biological potentials. The synthesized compounds were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and as scavengers of DPPH and ABTS free radicals followed by behavioural antiamnesic evaluation in mice. The compounds; SB-1, SB-3, SB-4 and SB-6 more potently inhibited AChE with IC50 values of 0.078, 0.157, 0.108, and 0.014 µM respectively. The BChE was more potently inhibited by SB-3 with IC50 of 0.057 µM. Moreover, all of the tested compounds exhibited strong antioxidant potentials with promising results of SB-3 against DPPH with IC50 of 0.305 µM, while SB-5 was most active against ABTS with IC50 of 0.190 µM. The in-vivo studies revealed the improvement in memory deficit caused by scopolamine. Y-Maze and new object recognition test showed a considerable decline in cognitive dysfunctions. In Y-Maze test the spontaneous alteration of 69.44 ± 1% and 84.88 ± 1.35% for SB-1 and 68.92 ± 1% and 80.89 ± 1% for SB-3 at both test doses were recorded while during the novel object recognition test the Discrimination Index percentage of SB-1 was more pronounced as compared to standard drug. All compounds were found to be potent inhibitors of AChE, BChE, DPPH, and ABTS in vitro however, SB-1 and SB-3 were comparatively more potent. SB-1 was also more active in reclamation of memory deficit caused by scopolamine. SB-1 and SB-3 may be considered as excellent drug candidates for treating amnesia subjected to toxicological evaluations in other animal models.

8.
Cancer Biomark ; 38(4): 465-487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073377

RESUMO

AIM: Esophageal Squamous Cell Carcinoma (ESCC) is a histological subtype of esophageal cancer that begins in the squamous cells in the esophagus. In only 19% of the ESCC-diagnosed patients, a five-year survival rate has been seen. This necessitates the identification of high-confidence biomarkers for early diagnosis, prognosis, and potential therapeutic targets for the mitigation of ESCC. METHOD: We performed a meta-analysis of 10 mRNA datasets and identified consistently perturbed genes across the studies. Then, integrated with ESCC ATLAS to segregate 'core' genes to identify consequences of primary gene perturbation events leading to gene-gene interactions and dysregulated molecular signaling pathways. Further, by integrating with toxicogenomics data, inferences were drawn for gene interaction with environmental exposures, trace elements, chemical carcinogens, and drug chemicals. We also deduce the clinical outcomes of candidate genes based on survival analysis using the ESCC related dataset in The Cancer Genome Atlas. RESULT: We identified 237 known and 18 novel perturbed candidate genes. Desmoglein 1 (DSG1) is one such gene that we found significantly downregulated (Fold Change =-1.89, p-value = 8.2e-06) in ESCC across six different datasets. Further, we identified 31 'core' genes (that either harbor genetic variants or are regulated by epigenetic modifications) and found regulating key biological pathways via adjoining genes in gene-gene interaction networks. Functional enrichment analysis showed dysregulated biological processes and pathways including "Extracellular matrix", "Collagen trimmer" and "HPV infection" are significantly overrepresented in our candidate genes. Based on the toxicogenomic inferences from Comparative Toxicogenomics Database we report the key genes that interacted with risk factors such as tobacco smoking, zinc, nitroso benzylmethylamine, and drug chemicals such as cisplatin, Fluorouracil, and Mitomycin in relation to ESCC. We also point to the STC2 gene that shows a high risk for mortality in ESCC patients. CONCLUSION: We identified novel perturbed genes in relation to ESCC and explored their interaction network. DSG1 is one such gene, its association with microbiota and a clinical presentation seen commonly with ESCC hints that it is a good candidate for early diagnostic marker. Besides, in this study we highlight candidate genes and their molecular connections to risk factors, biological pathways, drug chemicals, and the survival probability of ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Desmogleína 1/genética , Desmogleína 1/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Biologia Computacional , Genômica , Prognóstico , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética
9.
Heliyon ; 9(11): e21222, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053906

RESUMO

Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 µg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 µg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 µg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 µg/mL) and fenchone (69.03 ± 2.31 µg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 µg/mL) and camphor (48.39 ± 1.92 µg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 µg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 µg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 µg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 µg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.

10.
Heliyon ; 9(11): e22546, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034631

RESUMO

Chalcones (designated JA1, JA2 and JA3) were prepared from aromatic aldehyde and acetophenone which were then characterized using various spectroscopic techniques. The antioxidant potential of synthesized compounds was evaluated against DPPH free radical whereas the antidiabetic potential was determined against alpha glucosidase. Further the antidiabetic potential of the synthesized compounds was evaluated in rat model which were given orally experimental animals in doses 10 and 20 mg/kg body weight. The blood biochemical parameters like total cholesterol, triglycerides, alanine phosphatase, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, serum creatinine, HDL, and LDL levels were determined using commercially available kits. The antioxidant potential was found high for JA3 followed by JA2 with IC50 value of 64.02 ± 1.47 µg/ml whereas against alpha glucosidase again the same compound with IC50 of 63.04 µg/ml exhibited highest inhibitory potential. The blood glucose level was brought to almost normal level (126.88 and 119.13 mg/dl at 10 and 20 mg/kg body weight) in diabetic rats (induced by STZ) by compound JA3 at the tested doses in comparison to acarbose at day 28th. The blood biochemical parameters were normalized in diabetic rats by compound JA3 compared with diabetic control group. Based on the results JA3 should be considered as effective antioxidant and antidiabetic drug candidate.

11.
Front Biosci (Landmark Ed) ; 28(9): 229, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37796709

RESUMO

BACKGROUND: Screening new natural molecules with pharmacological and/or cosmetic properties remains a highly sought-after area of research. Moreover, essential oils and volatile compounds have recently garnered significant interest as natural substance candidates. In this study, the volatile components of Pistacia lentiscus L. essential oils (PLEOs) isolated from the fruit and its main compounds, alpha-pinene, and limonene, are investigated for antioxidant, antidiabetic, and dermatoprotective activities. METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities. RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL). CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.


Assuntos
Óleos Voláteis , Pistacia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Limoneno/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Amilases
12.
Heliyon ; 9(9): e19292, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662785

RESUMO

Diabetes mellitus (DM) is the most prevalent endocrine disorder. Numerous individual herbs possess anti-diabetic activity. The seeds of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum are traditionally used to manage DM. The ambition of this work was to formulate the poly-herbal granules (PHGs) comprising of these three functional foods and evaluate their in-vitro antioxidant and antidiabetic potential. The dried seed extracts of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum were used in a ratio of 2.5:1:1 to formulate PHGs by wet granulation method. The ratio of extracts was selected on the basis of traditional phytotherapies popularly used by local Hakeems of Pakistan to achieve glycemic control in diabetic patients resistant to traditional allopathic regime of medicine. The flow properties of developed PHGs were evaluated. The UV-Visible spectroscopic, Fourier Transform Infrared (FTIR) and HPLC-DAD of all seed extracts and PHGs were performed. The in-vitro antioxidant DPPH, FRAP, total antioxidant capacity (TAC) and Nitric Oxide (NO) scavenging assays were carried out on PHGs. The in-vitro antidiabetic activity of PHGs was investigated by alpha-amylase and alpha-glucosidase enzyme inhibition activity. The developed PHGs exhibited excellent flow properties. The UV-Vis spectra of all seed extracts and PHGs demonstrated peak at 278 nm showing the presence of flavonoids and phenols. The FTIR spectra confirmed the existence of flavonoids, and phenols along with amines in seed extracts as well as PHGs. The HPLC-DAD test revealed the existence of gallic acid, ascorbic acid, Quercetin-3-(caffeoyldiglucoside)-7-glucoside, Rosmarinic acid, delphinidin-3,5-diglucosides, Kaempferol-3-feruloylsophoroside-7-glucoside and Phloroglucinol in PHGs. The PHGs exhibited IC50 of 51.23, 58.57, 55.41 and 53.13 µg/mL in DPPH assay, FRAP assay, TAC, Nitric oxide scavenging assays respectively. The PHGs also demonstrated IC50 of 49.97 and 36.16 µg/mL in alpha-amylase and in alpha-glucosidase inhibition assays respectively in dose dependent manner. The developed PHGs exhibited an excellent flow property. These exhibit significant in-vitro antioxidant and antidiabetic profile by virtue of flavonoid and phenolic acid derivatives.

13.
Infect Agent Cancer ; 18(1): 47, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641095

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS: This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS: We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS: Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION: This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.

14.
Healthcare (Basel) ; 11(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444753

RESUMO

Collaboration between physicians and nurses is essential to healthcare delivery and is associated with high-quality patient care, greater patient satisfaction, and better health outcomes. Hence, it is imperative that doctors and nurses have a particular set of interprofessional collaboration skills. This descriptive cross-sectional study assessed how medical students in the pre-clinical and clinical years perceived attitudes toward collaboration between physicians and nurses in a hospital setting. The Jefferson Scale of Attitude toward Physician-nurse Collaboration (JSAPNC) was reverse-translated into Arabic for the current study. The results showed a total JSAPNC mean score of 46.55, lower than other medical students in other universities. In general, the results of the study showed no significant difference in the total JSAPNC score among medical students when analyzed according to age, clinical exposure, and year level, except in the two factors of JSAPNC: shared education and teamwork (p = 0.038) and caring as opposed to curing (p = 0.043). The findings of this study suggest the necessity of integrating interprofessional education (IPE) across the medical school curriculum because, as future physicians, medical students would be well equipped to treat their patients in partnership with their nursing colleagues.

15.
Biomedicines ; 11(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37189682

RESUMO

The technologies for fabrication of nanocrystals have an immense potential to improve solubility of a variety of the poor water-soluble drugs with subsequent enhanced bioavailability. Repaglinide (Rp) is an antihyperglycemic drug having low bioavailability due to its extensive first-pass metabolism. Microfluidics is a cutting-edge technique that provides a new approach for producing nanoparticles (NPs) with controlled properties for a variety of applications. The current study's goal was to engineer repaglinide smart nanoparticles (Rp-Nc) utilizing microfluidic technology (Dolomite Y shape), and then to perform in-vitro, in-vivo, and toxicity evaluations of them. This method effectively generated nanocrystals with average particle sizes of 71.31 ± 11 nm and a polydispersity index (PDI) of 0.072 ± 12. The fabricated Rp's crystallinity was verified by Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD). In comparison to the raw and commercially available tablets, the fabricated Rp's nanoparticles resulted in a higher saturation solubility and dissolving rate (p < 0.05). Rp nanocrystals had a considerably lower (p < 0.05) IC50 value than that of the raw drug and commercial tablets. Moreover, Rp nanocrystals at the 0.5 and 1 mg/kg demonstrated a significant decrease in blood glucose level (mg/dL, p < 0.001, n = 8) compared to its counterparts. Rp nanocrystals at the 0.5 mg/kg demonstrated a significant decrease (p < 0.001, n = 8) in blood glucose compared to its counterparts at a dose of 1 mg/kg. The selected animal model's histological analyses and the effect of Rp nanocrystals on several internal organs were determined to be equivalent to those of the control animal group. The findings of the present study indicated that nanocrystals of Rp with improved anti-diabetic properties and safety profiles can be successfully produced using controlled microfluidic technology, an innovative drug delivery system (DDS) approach.

16.
Microsc Res Tech ; 86(7): 846-861, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245116

RESUMO

The current study aims to utilize the bacteria Paraclostridium benzoelyticum strain 5610 to synthesize bio-genic silver nanoparticles (AgNPs). Biogenic AgNPs were thoroughly examined using various characterization techniques such as UV-spectroscopy, XRD, FTIR, SEM, and EDX. Synthesis of AgNPs was confirmed by UV-vis analysis resulting in absorption peak at 448.31 nm wavelength. The SEM analysis indicated the morphological characteristics and size of AgNPs which was 25.29 nm. The face centered cubic (FCC) crystallographic structure was confirmed by XRD. Furthermore, FTIR study affirmed the capping of AgNPs by different compounds found in biomass of the Paraclostridium benzoelyticum strain 5610. Later, EDX was used to determine the elemental composition with respective concentration and distribution. Additionally, in the current study the antibacterial, anti-inflammatory, antioxidant, anti-aging, and anti-cancer ability of AgNPs was assessed. The antibacterial activity of AgNPs was tested against four distinct sinusitis pathogens: Haemophilus in-fluenza, Streptococcus pyogenes, Moraxella catarrhalis and Streptococcus pneumonia. AgNPs shows significant inhibition zone against Streptococcus pyogenes 16.64 ± 0.35 followed by 14.32 ± 071 for Moraxella catarrhalis. Similarly, the antioxidant potential was found maximum (68.37 ± 0.55%) at 400 µg/mL and decrease (5.48 ± 0.65%) at 25 µg/mL, hence the significant antioxidant ability was observed. Furthermore, anti-inflammatory activity of AgNPs shows the strongest inhibitory action (42.68 ± 0.62%) for 15-LOX with lowest inhibition activity for COX-2 (13.16 ± 0.46%). AgNPs have been shown to exhibit significant inhibitory actions against the enzyme elastases AGEs (66.25 ± 0.49%), which are followed by AGEs of visperlysine (63.27 ± 0.69%). Furthermore, the AgNPs show high toxicity against HepG2 cell line which shows 53.543% reduction in the cell viability after 24 h of treatment. The anti-inflammatory activity demonstrated a potent inhibitory effect of the bio-inspired AgNPs. Overall, the biogenic AgNPs have the ability to be served for the treatments of anti-aging and also due to their anti-cancer, antioxidant abilities NPs may be a useful therapy choice for a variety of disorders including cancer, bacterial infections and other inflammatory diseases. Moreover, further studies are required in the future to evaluate their in vivo biomedical applications. HIGHLIGHTS: Biogenic synthesis of AgNPs using Paraclostridium benzoelyticum Strain for the first time. FTIR analysis confirmed capping of potent biomolecules which are of great use in applied field especially Nanomedicines. Notable antimicrobial activity against sinusitis bacteria and cytotoxic potential of synthesized AgNPs on in vitro basis produce a new idea shifting us to treat cancerous cell lines.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Bactérias , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Produtos Finais de Glicação Avançada/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108323

RESUMO

Small-molecule-inhibitor-based bone differentiation has been recently exploited as a novel approach to regulating osteogenesis-related signaling pathways. In this study, we identified 1-Azakenpaullone, a highly selective inhibitor of glycogen synthase kinase-3ß (GSK-3ß), as a powerful inducer of osteoblastic differentiation and mineralization of human mesenchymal stem cells (MSCs). GSK-3ß is a serine-threonine protein kinase that plays a major role in different disease development. GSK-3ß is a key regulator of Runx2 activity in osteoblastic formation. We evaluated alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin Red staining to assess the mineralization of cultured human MSCs. Gene expression profiling was assessed using an Agilent microarray platform, and bioinformatics were performed using Ingenuity Pathway Analysis software. Human MSCs treated with 1-Azakenpaullone showed higher ALP activity, increased in vitro mineralized matrix formation, and the upregulation of osteoblast-specific marker gene expression. Global gene expression profiling of 1-Azakenpaullone-treated human MSCs identified 1750 upregulated and 2171 downregulated mRNA transcripts compared to control cells. It also suggested possible changes in various signaling pathways, including Wnt, TGFß, and Hedgehog. Further bioinformatics analysis employing Ingenuity Pathway Analysis recognized significant enrichment in the 1-Azakenpaullone-treated cells of genetic networks involved in CAMP, PI3K (Complex), P38 MAPK, and HIF1A signaling and functional categories associated with connective tissue development. Our results suggest that 1-Azakenpaullone significantly induced the osteoblastic differentiation and mineralization of human MSCs mediated by the activation of Wnt signaling and the nuclear accumulation of ß-catenin, leading to the upregulation of Runx2, a key transcription factor that ultimately promotes the expression of osteoblast-specific genes. Thus, 1-Azakenpaullone could be used as an osteo-promotor factor in bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Via de Sinalização Wnt/fisiologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Diferenciação Celular/genética , beta Catenina/metabolismo , Osteoblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
18.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903459

RESUMO

Bacterial resistance to antibiotics and host defense systems is primarily due to bacterial biofilm formation in antibiotic therapy. In the present study, two complexes, bis (biphenyl acetate) bipyridine Cu (II) (1) and bis (biphenyl acetate) bipyridine Zn (II) (2), were tested for their ability to prevent biofilm formation. The minimum inhibitory concentration and minimum bactericidal concentration of complexes 1 and 2 were 46.87 ± 1.822 and 93.75 ± 1.345 and 47.87 ± 1.345 and 94.85 ± 1.466 µg/mL, respectively. The significant activity of both complexes was attributed to the damage caused at the membrane level and was confirmed using an imaging technique. The biofilm inhibitory potential levels of complexes 1 and 2 were 95% and 71%, respectively, while the biofilm eradication potential levels were 95% and 35%, respectively, for both complexes. Both the complexes showed good interactions with the E. coli DNA. Thus, complexes 1 and 2 are good antibiofilm agents that exert their bactericidal actions possibly by disrupting the bacterial membrane and interacting with the bacterial DNA, which can act as a powerful agent to restrain the development of bacterial biofilm on therapeutic implants.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Biofilmes , Bactérias , Testes de Sensibilidade Microbiana , Zinco
19.
Brain Sci ; 13(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979333

RESUMO

Depression is a serious psychological disorder which negatively affects human feelings and actions. The use of antidepressants is the therapy of choice while treating depression. However, such drugs are associated with severe side effects. There is a need for efficient and harmless drugs. In this connection, the present study was designed to synthesize several substituted benzodiazepine derivatives and explore their antidepressant potentials in an animal model. The chalcone backbone was initially synthesized, which was then converted into several substituted benzodiazepine derivatives designated as 1-6. The synthesized compounds were identified using spectroscopic techniques. The experimental animals (mice) after acclimatation were subjected to forced swim test (FST) and tail suspension test (TST) after oral administration of the synthesized compounds to evaluate their antidepressant potentials. At the completion of the mentioned test, the animals were sacrificed to determine GABA level in their brain hippocampus. The chloro-substituent compound (2) significantly reduced the immobility time (80.81 ± 1.14 s; p < 0.001 at 1.25 mg/kg body weight and 75.68 ± 3.73 s with p < 0.001 at 2.5 mg/kg body weight dose), whereas nitro-substituent compound (5) reduced the immobility time to 118.95 ± 1.31 and 106.69 ± 3.62 s (p < 0.001), respectively, at the tested doses (FST). For control groups, the recorded immobility time recorded was 177.24 ± 1.82 s. The standard drug diazepam significantly reduced immobility time to 70.13 ± 4.12 s while imipramine reduced it to 65.45 ± 2.81 s (p < 0.001). Similarly, in the TST, the compound 2 reduced immobility time to 74.93 ± 1.14 s (p < 0.001) and 70.38 ± 1.43 s (p < 0.001), while compound 5 reduced it to 88.23 ± 1.89 s (p < 0.001) and 91.31 ± 1.73 s (p < 0.001) at the tested doses, respectively, as compared to the control group immobility time (166.13 ± 2.18 s). The compounds 1, 3, 4, and 6 showed weak antidepressant responses as compared to compounds 2 and 5. The compounds 2 and 5 also significantly enhanced the GABA level in the brain's hippocampus of experimental animals, indicating the possible involvement of GABAergic mechanism in alleviating the depression which is evident from the significant increase in mRNA levels for the α subunit of the GABAA receptors in the prefrontal cortex of mice as well. From the results, it can be concluded that compound 2 and 5 could be used as alternative drugs of depression. However, further exploration in this connection is needed in other animal models in order to confirm the observed results in this study.

20.
Cureus ; 15(2): e35180, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36811127

RESUMO

INTRODUCTION: Invasive lobular carcinoma (ILC) is the second most common histologic type of breast carcinoma. The etiology of ILC is unknown; however, many contributing risk factors have been suggested. Treatment of ILC can be divided into local and systemic. Our objectives were to assess the clinical presentations, risk factors, radiological findings, pathological types, and surgical options for patients with ILC treated at the national guard hospital. Identify the factors associated with metastasis and recurrence. METHODS: Retrospective cross-sectional descriptive study at a tertiary care center in Riyadh. All adult patients aged 16 years and above, from different nationalities, and both genders, were diagnosed with ILC from 2000 to 2017 and followed up at KAMC. The sampling technique was a non-probability consecutive technique. Among 1066 patients identified, 91 patients were diagnosed with ILC over seventeen years study period. RESULTS: The median age at the primary diagnosis was 50. On the clinical examination, 63 (71%) cases were found to have palpable masses which was the most suspicious finding. On radiology, the most encountered finding was speculated masses which were seen in 76 (84%). Regarding the pathology, unilateral breast cancer was seen in 82 while bilateral breast cancer was found only in eight. For the biopsy, a core needle biopsy was the most commonly used in 83 (91%) patients. The most documented surgery for ILC patients was a modified radical mastectomy. Metastasis in different organs was identified with the musculoskeletal system being the commonest site. Different significant variables were compared between patients with or without metastasis. Skin changes, post-operative invasion, estrogen, progesterone, and HER2 receptors were significantly associated with metastasis. Patients with metastasis were less likely to have conservative surgery. Regarding the Recurrence and five years survival, out of 62 cases, 10 had recurrence within five years, which was more prevalent in patients who had fine needle aspiration, excisional biopsy, and nulliparous patients. CONCLUSION: To our knowledge, this is the first study to exclusively describe ILC in Saudi Arabia. The results of this current study are highly important, as these results provide baseline data of ILC in the capital city of Saudi Arabia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA