Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(24): 243605, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956970

RESUMO

Optical helicity density is usually discussed for monochromatic electromagnetic fields in free space. It plays an important role in the interaction with chiral molecules or nanoparticles. Here we introduce the optical helicity density in a dispersive isotropic medium. Our definition is consistent with biorthogonal Maxwell electromagnetism in optical media and the Brillouin energy density as well as with the recently introduced canonical momentum and spin of light in dispersive media. We consider a number of examples, including electromagnetic waves in dielectrics, negative-index materials, and metals, as well as interactions of light in a medium with chiral and magnetoelectric molecules.

2.
Phys Rev Lett ; 119(20): 203903, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219386

RESUMO

Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their mutual annihilation. New pairs can be created as well. With near-field experiments supported by theory and numerical simulations, we study the persistence and pairing statistics of phase singularities in random optical fields as a function of the excitation wavelength. We demonstrate how such entities can encrypt fundamental properties of the random fields in which they arise.

3.
Sci Rep ; 6: 34772, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752037

RESUMO

We report theoretical evidence that bulk nonlinear materials weakly interacting with highly localized plasmonic modes in ultra-sub-wavelength metallic nanostructures can lead to nonlinear effects at the single plasmon level in the visible range. In particular, the two-plasmon interaction energy in such systems is numerically estimated to be comparable with the typical plasmon linewidths. Localized surface plasmons are thus predicted to exhibit a purely nonclassical behavior, which can be clearly identified by a sub-Poissonian second-order correlation in the signal scattered from the quantized plasmonic field under coherent electromagnetic excitation. We explicitly show that systems sensitive to single-plasmon scattering can be experimentally realized by combining electromagnetic confinement in the interstitial region of gold nanodimers with local infiltration or deposition of ordinary nonlinear materials. We also propose configurations that could allow to realistically detect such an effect with state-of-the-art technology, overcoming the limitations imposed by the short plasmonic lifetime.

4.
Phys Rev Lett ; 117(9): 093901, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610854

RESUMO

Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA