Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Proteome Res ; 23(3): 881-890, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38327087

RESUMO

Clinical diagnostics and microbiology require high-throughput identification of microorganisms. Sample multiplexing prior to detection is an attractive means to reduce analysis costs and time-to-result. Recent studies have demonstrated the discriminative power of tandem mass spectrometry-based proteotyping. This technology can rapidly identify the most likely taxonomical position of any microorganism, even uncharacterized organisms. Here, we present a simplified label-free multiplexing method to proteotype isolates by tandem mass spectrometry that can identify six microorganisms in a single 20 min analytical run. The strategy involves the production of peptide fractions with distinct hydrophobicity profiles using spin column fractionation. Assemblages of different fractions can then be analyzed using mass spectrometry. Results are subsequently interpreted based on the hydrophobic characteristics of the peptides detected, which make it possible to link each taxon identified to the initial sample. The methodology was tested on 32 distinct sets of six organisms including several worst-scenario assemblages-with differences in sample quantities or the presence of the same organisms in multiple fractions-and proved to be robust. These results pave the way for the deployment of tandem mass spectrometry-based proteotyping in microbiology laboratories.


Assuntos
Fracionamento Químico , Espectrometria de Massas em Tandem , Cromatografia Líquida
2.
Proteomics ; : e2300372, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168112

RESUMO

Rapid identification of microorganisms is essential for medical diagnostics, sanitary controls, and food safety. High-throughput analytical platforms currently rely on whole-cell MALDI-TOF mass spectrometry to process hundreds of samples per day. Although this technology has become a reference method, it is unable to process most environmental isolates and opportunistic pathogens due to an incomplete experimental spectrum database. In most cases, its discriminating power is limited to the species taxonomical rank. By recording much more sequence information at the peptide level, proteotyping by tandem mass spectrometry is able to identify the taxonomic position of any microorganism in the tree of life and can be highly discriminating at the subspecies level. We propose here a methodology for ultra-fast identification of microorganisms by tandem mass spectrometry based on direct sample infusion and a highly sensitive procedure for data processing and taxonomic identification. Results obtained on reference strains and hitherto uncharacterized bacterial isolates show identification to species level in 36 s of tandem mass spectrometry signal, 102 s when including the injection procedure. Flash proteotyping is highly discriminating, as it can provide information down to strain level. The methodology enables high throughput identification of isolates, opening up new prospects, particularly in culturomics, and diagnostics.

3.
Redox Biol ; 70: 103044, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38266577

RESUMO

Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.


Assuntos
Dinaminas , Traumatismo por Reperfusão Miocárdica , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Ratos , Cálcio/metabolismo , Doença da Artéria Coronariana/metabolismo , Hiperglicemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Dinaminas/metabolismo
4.
J Proteomics ; 289: 105007, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37730087

RESUMO

Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.


Assuntos
Bacillus cereus , Doenças Transmitidas por Alimentos , Humanos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Microbiologia de Alimentos , Eméticos/análise , Eméticos/metabolismo , Contaminação de Alimentos/análise
5.
Microorganisms ; 11(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630434

RESUMO

Microbial life can thrive in the most inhospitable places, such as nuclear facilities with high levels of ionizing radiation. Using direct meta-analyses, we have previously highlighted the presence of bacteria belonging to twenty-five different genera in the highly radioactive water of the cooling pool of an operating nuclear reactor core. In the present study, we further characterize this specific environment by isolating and identifying some of these microorganisms and assessing their radiotolerance and their ability to decontaminate uranium. This metal is one of the major radioactive contaminants of anthropogenic origin in the environment due to the nuclear and mining industries and agricultural practices. The microorganisms isolated when sampling was performed during the reactor operation consisted mainly of Actinobacteria and Firmicutes, whereas Proteobacteria were dominant when sampling was performed during the reactor shutdown. We investigated their tolerance to gamma radiation under different conditions. Most of the bacterial strains studied were able to survive 200 Gy irradiation. Some were even able to withstand 1 kGy, with four of them showing more than 10% survival at this dose. We also assessed their uranium uptake capacity. Seven strains were able to remove almost all the uranium from a 5 µM solution. Four strains displayed high efficiency in decontaminating a 50 µM uranium solution, demonstrating promising potential for use in bioremediation processes in environments contaminated by radionuclides.

6.
Anal Chem ; 95(35): 13163-13171, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37590279

RESUMO

To meet clinical diagnostic needs and for general microbiological screening, it is essential to be able to accurately and rapidly identify any microorganisms from complex microbiota. To gain insight into the individual components of microbiota, culturomics has been proposed as a means to systematically test hundreds of possible cultivation conditions and generate numerous microbial isolates with very distinct characteristics. High-throughput identification methods must now be developed to quickly screen these isolates. Currently, most multiplexing methods involve labeling, which comes at a cost. In this paper, we present an innovative label-free multiplexing method for the identification of microorganisms using tandem mass spectrometry. The method is based on offline reversed-phase fractionation of individual peptidomes. Multiplexing is achieved by mixing fractions of staged hydrophobicity; thus, each sample is mapped to specific elution times. In this proof-of-concept study, multiplexed samples were analyzed by tandem mass spectrometry in a single run and microorganisms present in the mixture were resolved by phylopeptidomics proteotyping. Using this methodology, up to 21 microorganisms could be identified in a single 60 min run performed with a Q-Exactive HF high-resolution mass spectrometer, resulting in a rate of one microorganism identified per 3 min of mass spectrometry, without any need for the use of labeling reagents. This approach opens new perspectives for the application of high-throughput proteotyping of bacteria using tandem mass spectrometry in large culturomics projects.


Assuntos
Fracionamento Químico , Microbiota , Estudo de Prova de Conceito , Espectrometria de Massas em Tandem
7.
Microorganisms ; 11(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37317144

RESUMO

Shotgun proteomics has proven to be an attractive alternative for identifying a pathogen and characterizing the antimicrobial resistance genes it produces. Because of its performance, proteotyping of microorganisms by tandem mass spectrometry is expected to become an essential tool in modern healthcare. Proteotyping microorganisms that have been isolated from the environment by culturomics is also a cornerstone for the development of new biotechnological applications. Phylopeptidomics is a new strategy that estimates the phylogenetic distances between the organisms present in the sample and calculates the ratio of their shared peptides, thus improving the quantification of their contributions to the biomass. Here, we established the limit of detection of tandem mass spectrometry proteotyping based on MS/MS data recorded for several bacteria. The limit of detection for Salmonella bongori with our experimental set-up is 4 × 104 colony-forming units from a sample volume of 1 mL. This limit of detection is directly related to the amount of protein per cell and therefore depends on the shape and size of the microorganism. We have demonstrated that identification of bacteria by phylopeptidomics is independent of their growth stage and that the limit of detection of the method is not degraded in presence of additional bacteria in the same proportion.

8.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239979

RESUMO

Correct identification of the microorganisms present in a complex sample is a crucial issue. Proteotyping based on tandem mass spectrometry can help establish an inventory of organisms present in a sample. Evaluation of bioinformatics strategies and tools for mining the recorded datasets is essential to establish confidence in the results obtained and to improve these pipelines in terms of sensitivity and accuracy. Here, we propose several tandem mass spectrometry datasets recorded on an artificial reference consortium comprising 24 bacterial species. This assemblage of environmental and pathogenic bacteria covers 20 different genera and 5 bacterial phyla. The dataset comprises difficult cases, such as the Shigella flexneri species, which is closely related to Escherichia coli, and several highly sequenced clades. Different acquisition strategies simulate real-life scenarios: from rapid survey sampling to exhaustive analysis. We provide access to individual proteomes of each bacterium separately to provide a rational basis for evaluating the assignment strategy of MS/MS spectra when recorded from complex mixtures. This resource should provide an interesting common reference for developers who wish to compare their proteotyping tools and for those interested in evaluating protein assignment when dealing with complex samples, such as microbiomes.


Assuntos
Proteínas de Bactérias , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Bactérias/metabolismo , Proteoma/análise
9.
Front Microbiol ; 13: 937862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847057

RESUMO

Many prokaryotes are covered by a two-dimensional array of proteinaceous subunits. This surface layers (S-layer) is incompletely characterized for many microorganisms. Here, we studied Bacillus cereus AH187. A genome analysis identified two genes encoding the S-layer proteins SL2 and EA1, which we experimentally confirmed to encode the two protein components of the S-layer covering the surface of B. cereus. Shotgun proteomics analysis indicated that SL2 is the major component of the B. cereus S-layer at the beginning of exponential growth, whereas EA1 becomes more abundant than SL2 during later stages of stationary growth. Microscopy analysis revealed the spatial organization of SL2 and EA1 at the surface of B. cereus to depend on their temporal-dynamics during growth. Our results also show that a mutant strain lacking functional SL2 and EA1 proteins has distinct surface properties compared to its parental strain, in terms of stiffness and hydrophilicity during the stationary growth phase. Surface properties, self-aggregation capacity, and bacterial adhesion were observed to correlate. We conclude that the dynamics of SL2 and EA1 expression is a key determinant of the surface properties of B. cereus AH187, and that the S-layer could contribute to B. cereus survival in starvation conditions.

10.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162964

RESUMO

The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response-to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Grupo dos Citocromos b/genética , Grupo dos Citocromos c/metabolismo , Citocromos a3/metabolismo , Citocromos a/metabolismo , Deleção de Genes , Proteínas de Membrana/genética , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/análogos & derivados , Heme/metabolismo , Estresse Oxidativo , Fenótipo , Proteômica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA