Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11692, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474661

RESUMO

Pharmaceuticals, biological polymer synthesis, eco-friendly uses, sustainable fuel cell innovations, microbial-enhanced extraction of petroleum, biological sensors, biological technology, and continual mathematical modeling refinement are all examples of how bioconvection is applied. This study examines the bio convectional viscoelastic-micropolar nano liquid flow with non-uniform heat sink/source, motile microorganisms that move across a stretched sheet. Thermal radiation and thermal conductivity are also explored. Brownian and thermophoresis diffusion effects are taken into account. The system of a higher partial differential equation is transformed to ODEs by using the appropriate similarity functions. Such reported equations are implemented with the computational tool MATLAB shooting approach using a bvp4c solver. The variations of numerous flow parameters comprise velocity, temperature, concentration, and motile microorganism profile. Various important, interesting transport numbers are numerically and graphically demonstrated with physical justifications. The bouncy ratio parameter reduces the fluid's velocity profile whereas the material parameter increases it. For increased melting parameters, the micro rotation profile improves, but it deteriorated. For the Prandtl number and temperature ratio parameters, the temperature profile is negative. The melting parameter influences the concentration profile. The microorganism's profile is decreased bioconvective Lewis numbers and is higher for the magnetic parameter. The current model has many features in the manufacturing industries, engineering works, physics, and applied mathematics.

2.
Sci Rep ; 13(1): 7795, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179414

RESUMO

Heat and mass transfer are crucial to numerous technical and commercial operations, including air conditioning, machinery power collectors, crop damage, processing food, heat transfer mechanisms, and cooling, among numerous others. The fundamental purpose of this research is to use the Cattaneo-Christov heat flux model to disclose an MHD flow of ternary hybrid nanofluid through double discs. The results of a heat source and a magnetic field are therefore included in a system of PDEs that model the occurrences. These are transformed into an ODE system using similarity replacements. The first-order differential equations that emerge are then handled using the computational technique Bvp4c shooting scheme. The Bvp4c function in MATLAB is used to numerically solve the governing equations. The influence of the key important factors on velocity, temperature, nanoparticles concentration, and is illustrated visually. Furthermore, increasing the volume fraction of nanoparticles improves thermal conduction, increasing the heat transfer rate at the top disc. The graph indicates that a slight increase in melting parameter rapidly declines the velocity distribution profile of nanofluid. The temperature profile was boosted due to the growing outcomes of the Prandtl number. The increasing variations of the thermal relaxation parameter decline the thermal distribution profile. Furthermore, for some exceptional instances, the obtained numerical answers were compared to previously disclosed data, yielding a satisfactory compromise. We believe that this discovery will have far-reaching ramifications in engineering, medicine, and the field of biomedical technology. Additionally, this model can be used to examine biological mechanisms, surgical techniques, nano-pharmacological drug delivery systems, and the therapy of diseases like cholesterol using nanotechnology.

3.
Sci Rep ; 13(1): 4679, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949147

RESUMO

In present times modern electronic devices often come across thermal difficulties as an outcome of excessive heat production or reduction in surface area for heat exclusion. The current study is aimed to inspect the role of iron (III) oxide in heat transfer enhancement over the rotating disk in an axisymmetric flow. Water is utilized as base fluid conveying nano-particle over the revolving axisymmetric flow mechanism. Additionally, the computational fluid dynamics (CFD) approach is taken into consideration to design and compute the present problem. For our convenience, two-dimensional axisymmetric flow configurations are considered to illustrate the different flow profiles. For radial, axial, and tangential velocity profiles, the magnitude of the velocity, streamlines, and surface graphs are evaluated with the similarity solution in the computational fluid dynamics module. The solution of dimensionless equations and the outcomes of direct simulations in the CFD module show a comparable solution of the velocity profile. It is observed that with an increment in nanoparticle volumetric concentration the radial velocity decline where a tangential motion of flow enhances. Streamlines stretch around the circular surface with the passage of time. The high magnetization force [Formula: see text] resist the free motion of the nanofluid around the rotating disk. Such research has never been done, to the best of the researchers' knowledge. The outcomes of this numerical analysis could be used for the design, control, and optimization of numerous thermal engineering systems, as described above, due to the intricate physics of nanofluid under the influences of magnetic field and the inclusion of complex geometry. Ferrofluids are metallic nanoparticle colloidal solutions. These kinds of fluids do not exist in nature. Depending on their purpose, ferrofluids are produced using a variety of processes. One of the most essential characteristics of ferrofluids is that they operate in a zero-gravity environment. Ferrofluids have a wide range of uses in engineering and medicine. Ferrofluids have several uses, including heat control loudspeakers and frictionless sealing. In the sphere of medicine, however, ferrofluid is employed in the treatment of cancer via magneto hyperthermia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA